1
|
El-Rab SMFG, Basha S, Ashour AA, Enan ET, Alyamani AA, Felemban NH. Green Synthesis of Copper Nano-Drug and Its Dental Application upon Periodontal Disease-Causing Microorganisms. J Microbiol Biotechnol 2021; 31:1656-1666. [PMID: 34489380 PMCID: PMC9706032 DOI: 10.4014/jmb.2106.06008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using Cupressus macrocarpa extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes (M. luteus. B. subtilis, P. aerioginosa) that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques. The CME-CuNPs were characterized, and accordingly, the peak found at 577 nm using UV-Vis spectrometer showed the formation of stable CME-CuNPs. Also, the results revealed the formation of spherical and oblong monodispersed CME-CuNPs with sizes ranged from 11.3 to 22.4 nm. The FTIR analysis suggested that the CME contains reducing agents that consequently had a role in Cu reduction and CME-CuNP formation. Furthermore, the CME-CuNPs exhibited potent antimicrobial efficacy against different isolates which was superior to the reported values in literature. The antibacterial efficacy of CME-CuNPs on oral bacteria was compared to the synergistic solution of clindamycin with CME-CuNPs. The solution exhibited a superior capacity to prevent bacterial growth. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitory concentration (FIC) of CME-CuNPs with clindamycin recorded against the selected periodontal disease-causing microorganisms were observed between the range of 2.6-3.6 μg/ml, 4-5 μg/ml and 0.312-0.5, respectively. Finally, the synergistic antimicrobial efficacy exhibited by CME-CuNPs with clindamycin against the tested strains could be useful for the future development of more effective treatments to control dental diseases.
Collapse
Affiliation(s)
- Sanaa M. F. Gad El-Rab
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 888, Taif 21974, KSA,Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt,Corresponding author Phone: +00201025475454 E-mail:
| | - Sakeenabi Basha
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia
| | - Amal A. Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Oral Pathology Division, Faculty of Dentistry, Taif University, Taif 21431, Saudi Arabia
| | - Enas Tawfik Enan
- Dental Biomaterials, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia,Dental Biomaterials, Faculty of Dentistry, Mansoura University, Dakahleya 35516, Egypt
| | - Amal Ahmed Alyamani
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 888, Taif 21974, KSA
| | - Nayef H. Felemban
- Preventive dentistry department, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia
| |
Collapse
|
2
|
Liu Y, Shi D, Wang J, Chen X, Zhou M, Xi X, Cheng J, Ma C, Chen T, Shaw C, Wang L. A Novel Amphibian Antimicrobial Peptide, Phylloseptin-PV1, Exhibits Effective Anti- staphylococcal Activity Without Inducing Either Hepatic or Renal Toxicity in Mice. Front Microbiol 2020; 11:565158. [PMID: 33193152 PMCID: PMC7649123 DOI: 10.3389/fmicb.2020.565158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/08/2020] [Indexed: 01/26/2023] Open
Abstract
In order to part address the problem of drug-resistant pathogens, antimicrobial peptides (AMPs) have been proposed as alternatives to traditional antibiotics. Herein, a novel phylloseptin peptide, named phylloseptin-PV1 (PPV1), is described from the defensive skin secretion of the Neotropical white-lined leaf frog, Phyllomedusa vaillantii. The peptide was synthesized by solid phase peptide synthesis (SPPS) and purified by RP-HPLC, prior to assessment of its biological activities. PPV1 not only demonstrated potent antimicrobial activity against planktonic ESKAPE microorganisms and the yeast, Candida albicans, but also inhibited and eradicated Staphylococcus aureus and MRSA biofilms. The antimicrobial mechanism was shown to include permeabilization of target cell membranes. The in vivo antimicrobial activity of the peptide was then evaluated using mice. PPV1 also exhibited antiproliferative activity against the cancer cell lines, H157, MCF-7, and U251MG, but had a lower potency against the normal cell line, HMEC-1. Although, the peptide possessed a moderate hemolytic action on mammalian red blood cells in vitro, it did not induce significant hepatic or renal toxicity in injected infected mice. These studies have thus found PPV1 to be a potent phylloseptin group AMP, which can effectively inhibit staphylococci, both in vitro and in vivo, without eliciting toxicity. These data thus provide support for further evaluation of PPV1 as a novel antimicrobial agent with therapeutic potential.
Collapse
Affiliation(s)
- Yue Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Daning Shi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom.,School of Government, Peking University, Beijing, China
| | - Jin Wang
- Department of Chinese Medicine, Pizhou People's Hospital, Pizhou, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
3
|
Xu H, Li X, Zheng X, Xia Y, Fu Y, Li X, Qian Y, Zou J, Zhao A, Guan J, Gu M, Yi H, Jia W, Yin S. Pediatric Obstructive Sleep Apnea is Associated With Changes in the Oral Microbiome and Urinary Metabolomics Profile: A Pilot Study. J Clin Sleep Med 2018; 14:1559-1567. [PMID: 30176961 DOI: 10.5664/jcsm.7336] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
STUDY OBJECTIVES Several cross-sectional studies have reported associations between oral diseases and obstructive sleep apnea (OSA). However, there have been no reports regarding the structure and composition of the oral microbiota with simultaneous evaluation of potential associations with perturbed metabolic profiles in pediatric OSA. METHODS An integrated approach, combining metagenomics based on high-throughput 16S rRNA gene sequencing, and metabolomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and gas chromatography coupled with time-of-flight mass spectrometry, was used to evaluate the oral microbiome and the urinary metabolome. RESULTS 16S rRNA gene sequencing indicated that the oral microbiome composition was significantly perturbed in pediatric OSA compared with normal controls, especially with regard to Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, and Actinobacteria. Moreover, metabolomics profiling indicated that 57 metabolites, 5 of which were metabolites related to the microflora of the digestive tract, were differentially present in the urine of pediatric patients with OSA and controls. Co-inertia and correlation analyses revealed that several oral microbiome changes were correlated with urinary metabolite perturbations in pediatric OSA. However, this correlation relationship does not imply causality. CONCLUSIONS High-throughput sequencing revealed that the oral microbiome composition and function were significantly altered in pediatric OSA. Further studies are needed to confirm and determine the mechanisms underlying these findings.
Collapse
Affiliation(s)
- Huajun Xu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Li
- Department of Otolaryngology-Head & Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojiao Zheng
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yunyan Xia
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqun Fu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Li
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Qian
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyin Zou
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihua Zhao
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meizhen Gu
- Department of Otolaryngology-Head & Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Yi
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Jia
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|