1
|
Pandey N, Davison SA, Krishnamurthy M, Trettel DS, Lo CC, Starkenburg S, Wozniak KL, Kern TL, Reardon SD, Unkefer CJ, Hennelly SP, Dale T. Precise Genomic Riboregulator Control of Metabolic Flux in Microbial Systems. ACS Synth Biol 2022; 11:3216-3227. [PMID: 36130255 PMCID: PMC9594778 DOI: 10.1021/acssynbio.1c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Engineered microbes can be used for producing value-added chemicals from renewable feedstocks, relieving the dependency on nonrenewable resources such as petroleum. These microbes often are composed of synthetic metabolic pathways; however, one major problem in establishing a synthetic pathway is the challenge of precisely controlling competing metabolic routes, some of which could be crucial for fitness and survival. While traditional gene deletion and/or coarse overexpression approaches do not provide precise regulation, cis-repressors (CRs) are RNA-based regulatory elements that can control the production levels of a particular protein in a tunable manner. Here, we describe a protocol for a generally applicable fluorescence-activated cell sorting technique used to isolate eight subpopulations of CRs from a semidegenerate library in Escherichia coli, followed by deep sequencing that permitted the identification of 15 individual CRs with a broad range of protein production profiles. Using these new CRs, we demonstrated a change in production levels of a fluorescent reporter by over two orders of magnitude and further showed that these CRs are easily ported from E. coli to Pseudomonas putida. We next used four CRs to tune the production of the enzyme PpsA, involved in pyruvate to phosphoenolpyruvate (PEP) conversion, to alter the pool of PEP that feeds into the shikimate pathway. In an engineered P. putida strain, where carbon flux in the shikimate pathway is diverted to the synthesis of the commodity chemical cis,cis-muconate, we found that tuning PpsA translation levels increased the overall titer of muconate. Therefore, CRs provide an approach to precisely tune protein levels in metabolic pathways and will be an important tool for other metabolic engineering efforts.
Collapse
Affiliation(s)
- Naresh Pandey
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Steffi A. Davison
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Malathy Krishnamurthy
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Daniel S. Trettel
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chien-Chi Lo
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shawn Starkenburg
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Katherine L. Wozniak
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Theresa L. Kern
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sean D. Reardon
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Clifford J. Unkefer
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott P. Hennelly
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Taraka Dale
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States,
| |
Collapse
|
2
|
Velazco S, Kambo D, Yu K, Saha A, Beckman E, Mysore N, Cauwenberghs G. Modeling Gene Expression: Lac operon. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1086-1091. [PMID: 34891476 DOI: 10.1109/embc46164.2021.9630940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gene regulation is an essential process for cell development, having a profound effect in dictating cell functions. Bacterial genes are often regulated through inducible systems like the Lac operon which plays an important role in cell metabolism. An accurate model of its regulation can reveal the dynamics of gene expression. In this paper, a mathematical model of this system is constructed by focusing on regulation by the Lac repressor. The results show, as expected, that the concentration of lactose approaches zero while glucose concentration approaches the initial concentration of lactose by the action of β-galactosidase, expressed by the Lac operon. Addition of PD control improves stability of the system, with the phase margin increasing from 45° to 90°. Modeling the dynamics of gene expression in inducible operons like Lac operon can be essential for its applications in the production of recombinant proteins and its potential usage in gene therapy.
Collapse
|
3
|
Tan SI, Hsiang CC, Ng IS. Tailoring Genetic Elements of the Plasmid-Driven T7 System for Stable and Robust One-Step Cloning and Protein Expression in Broad Escherichia coli. ACS Synth Biol 2021; 10:2753-2762. [PMID: 34597025 DOI: 10.1021/acssynbio.1c00361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The plasmid-driven T7 system (PDT7) is a flexible approach to trigger protein overexpression; however, most of the reported PDT7 rely on many auxiliary elements or inducible systems to attenuate the toxicity from the orthogonality of the T7 system, which limits its application as the one-step cloning and protein expression system. In this study, we developed a stable and robust PDT7 via tailoring the genetic elements. By error-prone mutagenesis, a mutated T7RNAP with TTTT insertion conferred a trace but enough amount of T7RNAP for stable and efficient PDT7, denoted as PDT7m. The replication origin was kept at the same level, while the ribosome binding site (RBS) of the T7 promoter was the most contributing factor, thus enhancing the protein expression twofold using PDT7m. For application as a host-independent screening platform, both constitutive and IPTG-inducible PDT7m were constructed. It was found that each strain harnessed different IPTG inducibilities for tailor-made strain selection. Constitutive PDT7m was successfully used to express the homologous protein (i.e., lysine decarboxylase) or heterologous protein (i.e., carbonic anhydrase, CA) as a one-step cloning and protein expression tool to select the best strain for cadaverine (DAP) or CA production, respectively. Additionally, PDT7m is compatible with the pET system for coproduction of DAP and CA simultaneously. Finally, PDT7m was used for in vivo high-end chemical production of aminolevulinic acid (ALA), in which addition of the T7 terminator successfully enhanced 340% ALA titer, thus paving the way to rapidly and effectively screening the superior strain as a cell factory.
Collapse
Affiliation(s)
- Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| |
Collapse
|
4
|
Gene Expression Space Shapes the Bioprocess Trade-Offs among Titer, Yield and Productivity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Optimal gene expression is central for the development of both bacterial expression systems for heterologous protein production, and microbial cell factories for industrial metabolite production. Our goal is to fulfill industry-level overproduction demands optimally, as measured by the following key performance metrics: titer, productivity rate, and yield (TRY). Here we use a multiscale model incorporating the dynamics of (i) the cell population in the bioreactor, (ii) the substrate uptake and (iii) the interaction between the cell host and expression of the protein of interest. Our model predicts cell growth rate and cell mass distribution between enzymes of interest and host enzymes as a function of substrate uptake and the following main lab-accessible gene expression-related characteristics: promoter strength, gene copy number and ribosome binding site strength. We evaluated the differential roles of gene transcription and translation in shaping TRY trade-offs for a wide range of expression levels and the sensitivity of the TRY space to variations in substrate availability. Our results show that, at low expression levels, gene transcription mainly defined TRY, and gene translation had a limited effect; whereas, at high expression levels, TRY depended on the product of both, in agreement with experiments in the literature.
Collapse
|
5
|
Cetnar DP, Salis HM. Systematic Quantification of Sequence and Structural Determinants Controlling mRNA stability in Bacterial Operons. ACS Synth Biol 2021; 10:318-332. [PMID: 33464822 DOI: 10.1021/acssynbio.0c00471] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
mRNA degradation is a central process that affects all gene expression levels, and yet, the determinants that control mRNA decay rates remain poorly characterized. Here, we applied a synthetic biology, learn-by-design approach to elucidate the sequence and structural determinants that control mRNA stability in bacterial operons. We designed, constructed, and characterized 82 operons in Escherichia coli, systematically varying RNase binding site characteristics, translation initiation rates, and transcriptional terminator efficiencies in the 5' untranslated region (UTR), intergenic, and 3' UTR regions, followed by measuring their mRNA levels using reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays during exponential growth. We show that introducing long single-stranded RNA into 5' UTRs reduced mRNA levels by up to 9.4-fold and that lowering translation rates reduced mRNA levels by up to 11.8-fold. We also found that RNase binding sites in intergenic regions had much lower effects on mRNA levels. Surprisingly, changing the transcriptional termination efficiency or introducing long single-stranded RNA into 3' UTRs had no effect on upstream mRNA levels. From these measurements, we developed and validated biophysical models of ribosome protection and RNase activity with excellent quantitative agreement. We also formulated design rules to rationally control a mRNA's stability, facilitating the automated design of engineered genetic systems with desired functionalities.
Collapse
|
6
|
Li N, Zeng W, Xu S, Zhou J. Toward fine-tuned metabolic networks in industrial microorganisms. Synth Syst Biotechnol 2020; 5:81-91. [PMID: 32542205 PMCID: PMC7283098 DOI: 10.1016/j.synbio.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
There are numerous microorganisms in nature capable of synthesizing diverse useful compounds; however, these natural microorganisms are generally inefficient in the production of target products on an industrial scale, relative to either chemical synthesis or extraction methods. To achieve industrial production of useful compounds, these natural microorganisms must undergo a certain degree of mutation or effective fine-tuning strategies. This review describes how to achieve an ideal metabolic fine-tuned process, including static control strategies and dynamic control strategies. The static control strategies mainly focus on various matabolic engineering strategies, including protein engineering, upregulation/downregulation, and combinatrorial control of these metabolic engineering strategies, to enhance the flexibility of their application in fine-tuned metabolic metworks. Then, we focus on the dynamic control strategies for fine-tuned metabolic metworks. The design principles derived would guide us to construct microbial cell factories for various useful compounds.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
7
|
Trofimenkoff EAM, Roussel MR. Small binding-site clearance delays are not negligible in gene expression modeling. Math Biosci 2020; 325:108376. [PMID: 32413365 DOI: 10.1016/j.mbs.2020.108376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 12/21/2022]
Abstract
During the templated biopolymerization processes of transcription and translation, a macromolecular machine, either an RNA polymerase or a ribosome, binds to a specific site on the template. Due to the sizes of these enzymes, there is a waiting time before one clears the binding site and another can bind. These clearance delays are relatively short, and one might think that they could be neglected. However, in the case of transcription, these clearance delays are associated with conservation laws, resulting in surprisingly large effects on the bifurcation diagrams in models of gene expression networks. We study an example of this phenomenon in a model of a gene regulated by a non-coding RNA displaying bistability. Neglecting the binding-site clearance delays in this model can only be compensated for by making ad hoc, unphysical adjustments to the model's kinetic constants.
Collapse
Affiliation(s)
- Elizabeth A M Trofimenkoff
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4.
| | - Marc R Roussel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4.
| |
Collapse
|
8
|
Pedersen S, Terkelsen TB, Eriksen M, Hauge MK, Lund CC, Sneppen K, Mitarai N. Fast Translation within the First 45 Codons Decreases mRNA Stability and Increases Premature Transcription Termination in E. coli. J Mol Biol 2019; 431:1088-1097. [DOI: 10.1016/j.jmb.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
9
|
Kristofich J, Morgenthaler AB, Kinney WR, Ebmeier CC, Snyder DJ, Old WM, Cooper VS, Copley SD. Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS Genet 2018; 14:e1007615. [PMID: 30148850 PMCID: PMC6128649 DOI: 10.1371/journal.pgen.1007615] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/07/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023] Open
Abstract
Synonymous mutations do not alter the specified amino acid but may alter the structure or function of an mRNA in ways that impact fitness. There are few examples in the literature, however, in which the effects of synonymous mutations on microbial growth rates have been measured, and even fewer for which the underlying mechanism is understood. We evolved four populations of a strain of Salmonella enterica in which a promiscuous enzyme has been recruited to replace an essential enzyme. A previously identified point mutation increases the enzyme’s ability to catalyze the newly needed reaction (required for arginine biosynthesis) but decreases its ability to catalyze its native reaction (required for proline biosynthesis). The poor performance of this enzyme limits growth rate on glucose. After 260 generations, we identified two synonymous mutations in the first six codons of the gene encoding the weak-link enzyme that increase growth rate by 41 and 67%. We introduced all possible synonymous mutations into the first six codons and found substantial effects on growth rate; one doubles growth rate, and another completely abolishes growth. Computational analyses suggest that these mutations affect either the stability of a stem-loop structure that sequesters the start codon or the accessibility of the region between the Shine-Dalgarno sequence and the start codon. Thus, these mutations would be predicted to affect translational efficiency and thereby indirectly affect mRNA stability because translating ribosomes protect mRNA from degradation. Experimental data support these hypotheses. We conclude that the effects of the synonymous mutations are due to a combination of effects on mRNA stability and translation efficiency that alter levels of the weak-link enzyme. These findings suggest that synonymous mutations can have profound effects on fitness under strong selection and that their importance in evolution may be under-appreciated. When a new enzyme is needed, microbes often recruit a pre-existing enzyme with a promiscuous activity corresponding to the newly needed activity. Such enzymes are often the “weak-link” in metabolism because they have not evolved to efficiently catalyze the new reaction. Under these circumstances, increasing the level of the weak-link enzyme can improve fitness. We evolved a strain of S. enterica in which a weak-link enzyme–E383A ProA–serves essential functions in synthesis of proline and arginine for 260 generations and then sequenced the genomes of several evolved strains. A mutation in the promoter of the operon encoding E383A ProA increased growth rate 9-fold. More surprisingly, a mutation upstream of the start codon and two synonymous mutations within the first six codons also increased growth rate by up to 68%. Introduction of all possible synonymous mutations in the first six codons showed that some doubled growth rate, while others slowed or even prevented growth. Computational and experimental data suggest that these effects were due to enhanced translational efficiency of the weak-link enzyme. These results show that synonymous mutations, once assumed to be selectively neutral, can have strong impacts on fitness when growth rate is limited by a weak-link enzyme.
Collapse
Affiliation(s)
- JohnCarlo Kristofich
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Andrew B. Morgenthaler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Wallis R. Kinney
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Christopher C. Ebmeier
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Daniel J. Snyder
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - William M. Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Vaughn S. Cooper
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| |
Collapse
|
10
|
Beck HJ, Moll I. Leaderless mRNAs in the Spotlight: Ancient but Not Outdated! Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0016-2017. [PMID: 30006995 PMCID: PMC11633608 DOI: 10.1128/microbiolspec.rwr-0016-2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Previously, leaderless mRNAs (lmRNAs) were perceived to make up only a minor fraction of the transcriptome in bacteria. However, advancements in RNA sequencing technology are uncovering vast numbers of lmRNAs, particularly in archaea, Actinobacteria, and extremophiles and thus underline their significance in cellular physiology and regulation. Due to the absence of conventional ribosome binding signals, lmRNA translation initiation is distinct from canonical mRNAs and can therefore be differentially regulated. The ribosome's inherent ability to bind a 5'-terminal AUG can stabilize and protect the lmRNA from degradation or allow ribosomal loading for downstream initiation events. As a result, lmRNAs remain translationally competent during a variety of physiological conditions, allowing them to contribute to multiple regulatory mechanisms. Furthermore, the abundance of lmRNAs can increase during adverse conditions through the upregulation of lmRNA transcription from alternative promoters or by the generation of lmRNAs from canonical mRNAs cleaved by an endonucleolytic toxin. In these ways, lmRNA translation can continue during stress and contribute to regulation, illustrating their importance in the cell. Due to their presence in all domains of life and their ability to be translated by heterologous hosts, lmRNAs appear further to represent ancestral transcripts that might allow us to study the evolution of the ribosome and the translational process.
Collapse
Affiliation(s)
- Heather J Beck
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunology and Genetics, University of Vienna, Vienna Biocenter, A-1030 Vienna, Austria
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunology and Genetics, University of Vienna, Vienna Biocenter, A-1030 Vienna, Austria
| |
Collapse
|
11
|
Bhattacharyya S, Jacobs WM, Adkar BV, Yan J, Zhang W, Shakhnovich EI. Accessibility of the Shine-Dalgarno Sequence Dictates N-Terminal Codon Bias in E. coli. Mol Cell 2018; 70:894-905.e5. [PMID: 29883608 PMCID: PMC6311106 DOI: 10.1016/j.molcel.2018.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/14/2018] [Accepted: 05/03/2018] [Indexed: 10/14/2022]
Abstract
Despite considerable efforts, no physical mechanism has been shown to explain N-terminal codon bias in prokaryotic genomes. Using a systematic study of synonymous substitutions in two endogenous E. coli genes, we show that interactions between the coding region and the upstream Shine-Dalgarno (SD) sequence modulate the efficiency of translation initiation, affecting both intracellular mRNA and protein levels due to the inherent coupling of transcription and translation in E. coli. We further demonstrate that far-downstream mutations can also modulate mRNA levels by occluding the SD sequence through the formation of non-equilibrium secondary structures. By contrast, a non-endogenous RNA polymerase that decouples transcription and translation largely alleviates the effects of synonymous substitutions on mRNA levels. Finally, a complementary statistical analysis of the E. coli genome specifically implicates avoidance of intra-molecular base pairing with the SD sequence. Our results provide general physical insights into the coding-level features that optimize protein expression in prokaryotes.
Collapse
Affiliation(s)
- Sanchari Bhattacharyya
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, USA
| | - William M Jacobs
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, USA
| | - Bharat V Adkar
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, USA
| | - Jin Yan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, USA; College of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wenli Zhang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, USA; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, USA.
| |
Collapse
|
12
|
Distinct Regulatory Role of Carbon Catabolite Protein A (CcpA) in Oral Streptococcal spxB Expression. J Bacteriol 2018; 200:JB.00619-17. [PMID: 29378884 DOI: 10.1128/jb.00619-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Pyruvate oxidase (SpxB)-dependent H2O2 production is under the control of carbon catabolite protein A (CcpA) in the oral species Streptococcus sanguinis and Streptococcus gordonii Interestingly, both species react differently to the presence of the preferred carbohydrate source glucose. S. gordonii CcpA-dependent regulation of spxB follows classical carbon catabolite repression. Conversely, spxB expression in S. sanguinis is not influenced by glucose but is repressed by CcpA. Here, we constructed strains expressing the heterologous versions of CcpA or the spxB promoter region to learn if the distinct regulation of spxB expression is transferable from S. gordonii to S. sanguinis and vice versa. While cross-species binding of CcpA to the spxB promoter is conserved in vitro, we were unable to swap the species-specific regulation. This suggests that a regulatory mechanism upstream of CcpA most likely is responsible for the observed difference in spxB expression. Moreover, the overall ecological significance of differential spxB regulation in the presence of various glucose concentrations was tested with additional oral streptococcus isolates and demonstrated that carbohydrate-dependent and carbohydrate-independent mechanisms exist to control expression of spxB in the oral biofilm. Overall, our data demonstrate the unexpected finding that metabolic pathways between two closely related oral streptococcal species can be regulated differently despite an exceptionally high DNA sequence identity.IMPORTANCE Polymicrobial diseases are the result of interactions among the residential microbes, which can lead to a dysbiotic community. Streptococcus sanguinis and Streptococcus gordonii are considered commensal species that are present in the healthy dental biofilm. Both species are able to produce significant amounts of H2O2 via the enzymatic action of the pyruvate oxidase SpxB. H2O2 is able to inhibit species associated with oral diseases. SpxB and its gene-regulatory elements present in both species are highly conserved. Nonetheless, a differential response to the presence of glucose was observed. Here, we investigate the mechanisms that lead to this differential response. Detailed knowledge of the regulatory mechanisms will aid in a better understanding of oral disease development and how to prevent dysbiosis.
Collapse
|
13
|
Abstract
The canonical translation initiation mechanism involves base pairing between the mRNA and 16S rRNA. However, a variety of identified mechanisms deviate from this conventional route. Beck and Janssen (J Bacteriol 199:e00091-17, 2017, https://doi.org/10.1128/JB.00091-17) have recently described another noncanonical mode of translation initiation. Here, we describe how this process differs from previously reported mechanisms, with the hope that it will foster increased awareness of the diversity of regulatory mechanisms that await discovery.
Collapse
|