1
|
Tan JW, Eicher SD, Kritchevsky JE, Bryan KA, Dickey A, Chitko-McKown CG, McDaneld TG. Insights into microbial compositions of the respiratory tract of neonatal dairy calves in a longitudinal probiotic trial through 16S rRNA sequencing. Front Microbiol 2025; 15:1499531. [PMID: 39845057 PMCID: PMC11751226 DOI: 10.3389/fmicb.2024.1499531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Probiotics are a promising intervention for modulating the microbiome and the immune system, promoting health benefits in cattle. While studies have characterized the calf lung bacterial profile with and without oral probiotics, simultaneous probiotic effects on the bacterial populations of multiple sites along the respiratory tract have not been characterized. Methods This study utilized the same pre-weaning diary calf group from our previous studies to characterize the bacterial populations present in the nostril and tonsil across control and treatment groups and nine sampling time points. DNA was exacted from the nostril and tonsil swabs and lung lavage fluids, and 16S ribosomal RNA gene hypervariable regions 1-3 were subsequently sequenced. Results Temporal variation in alpha bacterial diversity within the nostril, tonsil, and lung samples was observed, indicating distinct bacterial compositions among sampling time points. Oral probiotic treatment did not change alpha diversity in any respiratory tissue, however, spatial variability in bacterial taxa composition was observed among the three respiratory tract regions. While the majority of differentially abundant taxa in probiotic treated calves were unique to their anatomical location, a few were common to two anatomical locations and one Finegoldia amplicon sequence variant was differentially abundant in all three anatomical locations. Discussion In conclusion, these findings contribute to the understanding of the dynamic nature of bacterial diversity and the potential effects of probiotics within the bovine respiratory tract and provides insight for future studies of probiotics on animal health, disease prevention, and management.
Collapse
Affiliation(s)
- Jia W. Tan
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Susan D. Eicher
- Livestock Behavior Research Unit, USDA, ARS, West Lafayette, IN, United States
| | - Janice E. Kritchevsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | | | - Aaron Dickey
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | | | - Tara G. McDaneld
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|
2
|
Liu R, Liu Y, Qiu J, Ren Q, Wei C, Pan D, Shi J, Liu P, Wei D, Xiang T, Cheng N. Biochemical properties and substrate specificity of GOB-38 in Elizabethkingia anophelis. Sci Rep 2025; 15:351. [PMID: 39747310 PMCID: PMC11695579 DOI: 10.1038/s41598-024-82748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The novel pathogen, Elizabethkingia anophelis, has gained attention due to its high mortality rates and drug resistance facilitated by its inherent metallo-β-lactamases (MBLs) genes. This study successfully identified and outlined the functions of the B3-Q MBLs variant, GOB-38, in a clinical sample of E. anophelis. The T7 expression system was employed to stimulate the expression of recombinant protein in Escherichia coli, followed by an analysis of the biochemical properties of purified GOB-38. Our findings indicate that the enzyme GOB-38 displays a wide range of substrates, including broad-spectrum penicillins, 1-4 generation cephalosporins, and carbapenems, potentially contributing to in vitro drug resistance in E. coli through a cloning mechanism. It is important to highlight that GOB-38 exhibits a distinct active site composition compared to GOB-1/18, featuring hydrophilic amino acids Thr51 and Glu141 at both ends of its active center instead of hydrophobic alanine, potentially indicating a preference for imipenem. Furthermore, the co-isolation of Acinetobacter baumannii and E. anophelis, two opportunistic pathogens, from a single lung infection is noteworthy. Our in vitro co-culture experiments suggest that E. anophelis, carrying two MBL genes, may have the ability to transfer carbapenem resistance to other bacterial species through co-infection.
Collapse
Affiliation(s)
- Ren Liu
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Liu
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China
- Departments of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China
| | - Jiehui Qiu
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qun Ren
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chunping Wei
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Dejin Pan
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianglong Shi
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China
| | - Peng Liu
- Departments of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - DanDan Wei
- Departments of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China
| | - Tianxin Xiang
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China.
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China.
- Departments of Hospital Infection Control, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Na Cheng
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China.
- Departments of Hospital Infection Control, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Wei Q, Zuo W, Cong R, Luo K, Dong S. Combination Therapy of Trimethoprim-Sulfamethoxazole (TMP-SMZ) and Eravacycline for Treating Elizabethkingia anophelis-Induced Pulmonary Infections: A Case Report. Infect Drug Resist 2024; 17:4825-4832. [PMID: 39512396 PMCID: PMC11542489 DOI: 10.2147/idr.s490902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Elizabethkingia anophelis is an opportunistic pathogen that causes serious life-threatening infections. In this report, we describe a case of pulmonary infection caused by E. anophelis in a young female patient, following cardiac surgery, which was successfully treated with a combination of trimethoprim-sulfamethoxazole (TMP-SMZ) and eravacycline. Additionally, this report provides a summary of high-risk factors for E. anophelis infection, clinical manifestations, and therapeutic options. Given the high degree of antimicrobial drug resistance of the organism and the fact that inappropriate empirical antimicrobial therapy constitutes a risk factor for mortality, our case serves as a valuable reference for similar cases, highlighting potential strategies for effective management.
Collapse
Affiliation(s)
- Qimei Wei
- Department of Clinical Laboratory, Wuhan Asia Heart Hospital, Wuhan, 430022, People’s Republic of China
| | - Wenxia Zuo
- Department of Cardiac Critical Care Medicine, Wuhan Asia Heart Hospital, Wuhan, 430022, People’s Republic of China
| | - Rong Cong
- Department of Clinical Laboratory, Wuhan Asia Heart Hospital, Wuhan, 430022, People’s Republic of China
| | - Kun Luo
- Department of Clinical Laboratory, Wuhan Asia Heart Hospital, Wuhan, 430022, People’s Republic of China
| | - Shanshan Dong
- Department of Clinical Laboratory, Wuhan Asia Heart Hospital, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
4
|
Tang X, Liu Z, Li D, Xiong Y, Liao K, Chen Y. A Rare Case of Infective Endocarditis with Recurrent Fever Caused by Elizabethkingia anophelis. Infect Drug Resist 2024; 17:4625-4632. [PMID: 39469093 PMCID: PMC11514048 DOI: 10.2147/idr.s483796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Background Elizabethkingia anophelis, an opportunistic pathogen that can cause infections in multiple parts of the human body, has multiple drug resistance and a high mortality rate. However, there have been few reports of infective endocarditis (IE) caused by Elizabethkingia anophelis, which means that diagnosis and treatment face challenges that cannot be ignored. Rapid and accurate identification and drug sensitivity results are needed to make timely treatment adjustments. Case Presentation An 81-year-old man presented with recurrent fever and increased infection index for more than a month. Based on his clinical symptoms, infection index, reduplicative blood cultures, and results of transesophageal echocardiography, he was ultimately diagnosed with infective endocarditis caused by Elizabethkingia anophelis. The patient had a favorable outcome with a 6-week course of intravenous antibiotic therapy. Conclusion This is a rare and successfully cured case of IE caused by the pathogen of Elizabethkingia anophelis, which is difficult not only in diagnosis but also in treatment. This case provides a certain referential significance to the treatment of Elizabethkingia anophelis-caused IE in clinical practice.
Collapse
Affiliation(s)
- Xiuxin Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiyun Liu
- Department of Clinical Laboratory, Huizhou Central People ‘s Hospital, Huizhou, Guangdong, 516001, People’s Republic of China
| | - Danni Li
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yan Xiong
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yili Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
McDaneld TG, Eicher SD, Dickey A, Kritchevsky JE, Bryan KA, Chitko-McKown CG. Probiotics in milk replacer affect the microbiome of the lung in neonatal dairy calves. Front Microbiol 2024; 14:1298570. [PMID: 38249465 PMCID: PMC10797021 DOI: 10.3389/fmicb.2023.1298570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Probiotics have been investigated for their many health benefits and impact on the microbiota of the gut. Recent data have also supported a gut-lung axis regarding the bacterial populations (microbiomes) of the two locations; however, little research has been performed to determine the effects of oral probiotics on the microbiome of the bovine respiratory tract. We hypothesized that probiotic treatment would result in changes in the lung microbiome as measured in lung lavage fluid. Our overall goal was to characterize bacterial populations in the lungs of calves fed probiotics in milk replacer and dry rations from birth to weaning. Methods A group of 20 dairy calves was split into two treatment groups: probiotic (TRT; N = 10, milk replacer +5 g/d probiotics; Bovamine Dairy, Chr. Hansen, Inc., Milwaukee, WI) and control (CON; N = 10, milk replacer only). On day 0, birth weight was obtained, and calves were provided colostrum as per the dairy SOP. On day 2, probiotics were added to the milk replacer of the treated group and then included in their dry ration. Lung lavages were performed on day 52 on five random calves selected from each treatment group. DNA was extracted from lavage fluid, and 16S ribosomal RNA (rRNA) gene hypervariable regions 1-3 were amplified by PCR and sequenced using next-generation sequencing (Illumina MiSeq) for the identification of the bacterial taxa present. Taxa were classified into both operational taxonomic units (OTUs) and amplicon sequence variants (ASVs). Results Overall, the evaluation of these samples revealed that the bacterial genera identified in the lung lavage samples of probiotic-fed calves as compared to the control calves were significantly different based on the OTU dataset (p < 0.05) and approached significance for the ASV dataset (p < 0.06). Additionally, when comparing the diversity of taxa in lung lavage samples to nasal and tonsil samples, taxa diversity of lung samples was significantly lower (p < 0.05). Discussion In conclusion, analysis of the respiratory microbiome in lung lavage samples after probiotic treatment provides insight into the distribution of bacterial populations in response to oral probiotics and demonstrates that oral probiotics affect more than the gut microbiome.
Collapse
Affiliation(s)
- Tara G. McDaneld
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Susan D. Eicher
- Livestock Behavior Research Unit, USDA, ARS, West Lafayette, IN, United States
| | - Aaron Dickey
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Janice E. Kritchevsky
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | | | | |
Collapse
|
6
|
Nascimento APA, de Farias BO, Gonçalves-Brito AS, Magaldi M, Flores C, Quidorne CS, Montenegro KS, Bianco K, Clementino MM. Phylogenomics analysis of multidrug-resistant Elizabethkingia anophelis in industrial wastewater treatment plant. J Appl Microbiol 2023; 134:lxad215. [PMID: 37715335 DOI: 10.1093/jambio/lxad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
AIMS This study investigated the phylogenetic relatedness of multidrug-resistant Elizabethkingia anophelis recovered from an industrial wastewater treatment plant (WWTPi). METHODS AND RESULTS The wastewater samples were plated in brain heart infusion agar (4 mg/L ceftazidime, 8 mg/L meropenem, and 2 mg/L polimixin). Four isolates recovered from four stages of WWTPi (influent, aeration, decantation, and treated effluent) were identified and evaluated of susceptibility profiles in the VITEK 2 system. These strains identified as E. meningoseptica were confirmed to be E. anophelis by whole genomic sequencing (Miseq-Illumina) and showed antimicrobial resistance genes of β-lactams, aminoglycosides, and tetracycline's classes. The ribosomal multilocus sequence typing showed that they belong to the rST 65620 together with clinical strains. The phylogenomic tree revealed the similarity of our strains to those belonging to sublineage 11 and the single nucleotide polymorphism analysis confirmed that they belong to a single clade. CONCLUSIONS To the best of our knowledge, this is the first study reporting the persistence of multidrug-resistant E. anophelis sublineage 11 along the wastewater treatment.
Collapse
Affiliation(s)
- Ana Paula Alves Nascimento
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Beatriz Oliveira de Farias
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Andressa Silva Gonçalves-Brito
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Mariana Magaldi
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Claudia Flores
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Camila Silva Quidorne
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Kaylanne S Montenegro
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
| | - Kayo Bianco
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- COVID-19 Monitoring Network in Wastewater, Santo André, São Paulo, 09210-580, Brazil
| | - Maysa Mandetta Clementino
- National Institute of Quality Control in Health-INCQS, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, RJ 4365, Brazil
- COVID-19 Monitoring Network in Wastewater, Santo André, São Paulo, 09210-580, Brazil
| |
Collapse
|
7
|
Muacevic A, Adler JR, Gupta P, Agarwal A. Elizabethkingia anophelis Infections: A Case Series From a Tertiary Care Hospital in Uttar Pradesh. Cureus 2022; 14:e32057. [PMID: 36600834 PMCID: PMC9802642 DOI: 10.7759/cureus.32057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
Elizabethkingia anophelis is a gram-negative, aerobic, non-motile rod belonging to the Flavobacteriaceae family. Elizabethkingia is a genus of bacteria commonly found in the environment worldwide and has been detected in soil, river, water, and reservoirs. Over the period, it has emerged as an opportunistic human pathogen involved in neonatal meningitis and sepsis, as well as nosocomial outbreaks in adults with underlying medical conditions, including malignancies, diabetes, and chronic obstructive pulmonary disease. Here, we present a series of three cases of infection of E. anophelis in different clinical samples. These three cases were referred from different departments of King George's Medical University (KGMU), Lucknow, India to the Critical Care Medicine Department of KGMU, and finally succumbed to the infection.
Collapse
|
8
|
Hu S, Xu H, Meng X, Bai X, Xu J, Ji J, Ying C, Chen Y, Shen P, Zhou Y, Zheng B, Xiao Y. Population genomics of emerging Elizabethkingia anophelis pathogens reveals potential outbreak and rapid global dissemination. Emerg Microbes Infect 2022; 11:2590-2599. [PMID: 36197077 DOI: 10.1080/22221751.2022.2132880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Elizabethkingia anophelis is an emerging species and have increasingly been reported to cause life-threatening infections and even outbreaks in humans. Nevertheless, there is little data regarding the E. anophelis geographical distribution, phylogenetic structure, and transmission across the globe, especially in Asia. We utilize whole genome sequencing (WGS) data to define a global population framework, phylogenetic structure, geographical distribution, and transmission evaluation of E. anophelis pathogens. The geographical distribution diagram revealed the emerging pathogenic bacteria already distributed in various countries worldwide, especially in the USA and China. Strikingly, phylogenetic analysis showed a part of our China original E. anophelis shared the same ancestor with the USA outbreak strain, which implies the possibility of localized outbreaks and global spread. These closer related strains also contained ICEEaI, which might insert into a disrupted DNA repair mutY gene and made the strain more liable to mutation and outbreak infection. BEAST analysis showed that the most recent common ancestor for ICEEaI E. anophelis was dated twelve years ago, and China might be the most likely recent source of this bacteria. Our study sheds light on the potential possibility of E. anophelis causing the large-scale outbreak and rapid global dissemination. Continued genomic surveillance of the dynamics of E. anophelis populations will generate further knowledge for optimizing future prevent global outbreak infections.
Collapse
Affiliation(s)
- Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohua Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangxiang Bai
- Bioinformatics Institute, Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Junli Xu
- Bioinformatics Institute, Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiao Zhou
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
9
|
Hu S, Lv Y, Xu H, Zheng B, Xiao Y. Biofilm formation and antibiotic sensitivity in Elizabethkingia anophelis. Front Cell Infect Microbiol 2022; 12:953780. [PMID: 35967866 PMCID: PMC9366890 DOI: 10.3389/fcimb.2022.953780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Elizabethkingia anophelis has recently gained global attention and is emerging as a cause of life-threatening nosocomial infections. The present study aimed to investigate the association between antimicrobial resistance and the ability to form biofilm among E. anophelis isolated from hospitalized patients in China. Over 10 years, a total of 197 non-duplicate E. anophelis strains were collected. Antibiotic susceptibility was determined by the standard agar dilution method as a reference assay according to the Clinical and Laboratory Standards Institute. The biofilm formation ability was assessed using a culture microtiter plate method, which was determined using a crystal violet assay. Culture plate results were cross-checked by scanning electron microscopy imaging analysis. Among the 197 isolates, all were multidrug-resistant, and 20 were extensively drug-resistant. Clinical E. anophelis showed high resistance to current antibiotics, and 99% of the isolates were resistant to at least seven antibiotics. The resistance rate for aztreonam, ceftazidime, imipenem, meropenem, trimethoprim-sulfamethoxazole, cefepime, and tetracycline was high as 100%, 99%, 99%, 99%, 99%, 95%, and 90%, respectively. However, the isolates exhibited the highest susceptibility to minocycline (100%), doxycycline (96%), and rifampin (94%). The biofilm formation results revealed that all strains could form biofilm. Among them, the proportions of strong, medium, and weak biofilm-forming strains were 41%, 42%, and 17%, respectively. Furthermore, the strains forming strong or moderate biofilm presented a statistically significant higher resistance than the weak formers (p < 0.05), especially for piperacillin, piperacillin-tazobactam, cefepime, amikacin, and ciprofloxacin. Although E. anophelis was notoriously resistant to large antibiotics, minocycline, doxycycline, and rifampin showed potent activity against this pathogen. The data in the present report revealed a positive association between biofilm formation and antibiotic resistance, which will provide a foundation for improved therapeutic strategies against E. anophelis infections in the future.
Collapse
Affiliation(s)
- Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| |
Collapse
|
10
|
Xu L, Peng B, He Y, Cui Y, Hu Q, Wu Y, Chen H, Zhou X, Chen L, Jiang M, Zuo L, Chen Q, Wu S, Liu Y, Qin Y, Shi X. Isolation of Elizabethkingia anophelis From COVID-19 Swab Kits. Front Microbiol 2022; 12:799150. [PMID: 35058914 PMCID: PMC8763855 DOI: 10.3389/fmicb.2021.799150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To investigate and characterize the putative Elizabethkingia anophelis contaminant isolated from throat and anal swab samples of patients from three fever epidemic clusters, which were not COVID-19 related, in Shenzhen, China, during COVID-19 pandemic. Methods: Bacteria were cultured from throat (n = 28) and anal (n = 3) swab samples from 28 fever adolescent patients. The isolated bacterial strains were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) and the VITEK2 automated identification system. Nucleic acids were extracted from the patient samples (n = 31), unopened virus collection kits from the same manufacturer as the patient samples (n = 35, blank samples) and from unopened throat swab collection kits of two other manufacturers (n = 22, control samples). Metagenomic sequencing and quantitative real-time PCR (qPCR) detection were performed. Blood serum collected from patients (n = 13) was assessed for the presence of antibodies to E. anophelis. The genomic characteristics, antibiotic susceptibility, and heat resistance of E. anophelis isolates (n = 31) were analyzed. Results: The isolates were identified by MALDI-TOF/MS and VITEK2 as Elizabethkingia meningoseptica. DNA sequence analysis confirmed isolates to be E. anophelis. The patients' samples and blank samples were positive for E. anophelis. Control samples were negative for E. anophelis. The sera from a sub-sample of 13 patients were antibody-negative for isolated E. anophelis. Most of the isolates were highly homologous and carried multiple β-lactamase genes (bla B, bla GOB, and bla CME). The isolates displayed resistance to nitrofurans, penicillins, and most β-lactam drugs. The bacteria survived heating at 56°C for 30 min. Conclusion: The unopened commercial virus collection kits from the same manufacturer as those used to swab patients were contaminated with E. anophelis. Patients were not infected with E. anophelis and the causative agent for the fevers remains unidentified. The relevant authorities were swiftly notified of this discovery and subsequent collection kits were not contaminated. DNA sequence-based techniques are the definitive method for Elizabethkingia species identification. The E. anophelis isolates were multidrug-resistant, with partial heat resistance, making them difficult to eradicate from contaminated surfaces. Such resistance indicates that more attention should be paid to disinfection protocols, especially in hospitals, to avoid outbreaks of E. anophelis infection.
Collapse
Affiliation(s)
- Liangcai Xu
- Department of Public Health Laboratory Sciences, School of Public Health, University of South China, Hengyang, China
| | - Bo Peng
- Microbiology Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuxiang He
- Microbiology Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qinghua Hu
- Microbiology Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongbiao Chen
- Communicable Diseases Control and Prevention Division, Longhua District Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaofeng Zhou
- Communicable Diseases Control and Prevention Division, Longhua District Center for Disease Control and Prevention, Shenzhen, China
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, University of South China, Hengyang, China
| | - Min Jiang
- Microbiology Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Le Zuo
- Microbiology Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiongcheng Chen
- Microbiology Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuang Wu
- Microbiology Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yang Liu
- Institute for Disinfection and Vector Prevention and Control, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yanming Qin
- Institute for Disinfection and Vector Prevention and Control, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- Department of Public Health Laboratory Sciences, School of Public Health, University of South China, Hengyang, China.,Microbiology Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
11
|
Mantoo MR, Ghimire JJ, Mahopatra S, Sankar J. Elizabethkingia anophelis infection in an infant: an unusual presentation. BMJ Case Rep 2021; 14:14/5/e243078. [PMID: 34035030 DOI: 10.1136/bcr-2021-243078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 7-month-old male infant presented with history of fever for 2 weeks, multiple ecchymotic patches over face, trunk and lower limbs, and one episode of seizure. The infant had shock, respiratory failure, severe anaemia, thrombocytopenia and temporoparietal haematoma on CT scan of the head. He was managed with supportive care and broad-spectrum empiric antibiotics. Two consecutive blood cultures grew Elizabethkingia anophelis, sensitive only to piperacillin-tazobactam. The infant responded to therapy and was discharged after 2 weeks of hospital stay. Repeated coagulation studies done to rule out an underlying bleeding disorder were negative. There was no clue in favour of non-accidental trauma. We report this case to highlight the unusual clinical presentation of this emerging pathogen. Mostly reported in outbreaks from surgical and post-operative intensive care units, it was worrisome to find this infant presenting with community-acquired E. anophelis infection.
Collapse
Affiliation(s)
- Mohsin Raj Mantoo
- Pediatrics, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | - Sarita Mahopatra
- Microbiology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Jhuma Sankar
- Pediatrics, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
12
|
Nain Z, Abdulla F, Rahman MM, Karim MM, Khan MSA, Sayed SB, Mahmud S, Rahman SMR, Sheam MM, Haque Z, Adhikari UK. Proteome-wide screening for designing a multi-epitope vaccine against emerging pathogen Elizabethkingia anophelis using immunoinformatic approaches. J Biomol Struct Dyn 2019; 38:4850-4867. [PMID: 31709929 DOI: 10.1080/07391102.2019.1692072] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Elizabethkingia anophelis is an emerging human pathogen causing neonatal meningitis, catheter-associated infections and nosocomial outbreaks with high mortality rates. Besides, they are resistant to most antibiotics used in empirical therapy. In this study, therefore, we used immunoinformatic approaches to design a prophylactic peptide vaccine against E. anophelis as an alternative preventive measure. Initially, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were predicted from the highest antigenic protein. The CTL and HTL epitopes together had a population coverage of 99.97% around the world. Eventually, six CTL, seven HTL, and two LBL epitopes were selected and used to construct a multi-epitope vaccine. The vaccine protein was found to be highly immunogenic, non-allergenic, and non-toxic. Codon adaptation and in silico cloning were performed to ensure better expression within E. coli K12 host system. The stability of the vaccine structure was also improved by disulphide bridging. In addition, molecular docking and dynamics simulation revealed strong and stable binding affinity between the vaccine and toll-like receptor 4 (TLR4) molecule. The immune simulation showed higher levels of T-cell and B-cell activities which was in coherence with actual immune response. Repeated exposure simulation resulted in higher clonal selection and faster antigen clearance. Nevertheless, experimental validation is required to ensure the immunogenic potency and safety of this vaccine to control E. anophelis infection in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Faruq Abdulla
- Department of Statistics, Faculty of Sciences, Islamic University, Kushtia, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Shakil Ahmed Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sifat Bin Sayed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Shafi Mahmud
- Department of Biotechnology and Genetic Engineering, Faculty of Life and Earth Science, Rajshahi University, Rajshahi, Bangladesh
| | - S M Raihan Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Moinuddin Sheam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Zahurul Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | | |
Collapse
|
13
|
In Silico Identification of Three Types of Integrative and Conjugative Elements in Elizabethkingia anophelis Strains Isolated from around the World. mSphere 2019; 4:4/2/e00040-19. [PMID: 30944210 PMCID: PMC6449604 DOI: 10.1128/msphere.00040-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Elizabethkingia anophelis is an opportunistic human pathogen, and the genetic diversity between strains from around the world becomes apparent as more genomes are sequenced. Genome comparison identified three types of putative ICEs in 31 of 36 strains. The diversity of ICEs suggests that they had different origins. One of the ICEs was discovered previously from a large E. anophelis outbreak in Wisconsin in the United States; this ICE has integrated into the mutY gene of the outbreak strain, creating a mutator phenotype. Similar to ICEs found in many bacterial species, ICEs in E. anophelis carry various cargo genes that enable recipients to resist antibiotics and adapt to various ecological niches. The adaptive immune CRISPR-Cas system is present in nine of 36 strains. An ICE-derived spacer was found in the CRISPR locus in a strain that has no ICE, suggesting a past encounter and effective defense against ICE. Elizabethkingia anophelis is an emerging global multidrug-resistant opportunistic pathogen. We assessed the diversity among 13 complete genomes and 23 draft genomes of E. anophelis strains derived from various environmental settings and human infections from different geographic regions around the world from 1950s to the present. Putative integrative and conjugative elements (ICEs) were identified in 31/36 (86.1%) strains in the study. A total of 52 putative ICEs (including eight degenerated elements lacking integrases) were identified and categorized into three types based on the architecture of the conjugation module and the phylogeny of the relaxase, coupling protein, TraG, and TraJ protein sequences. The type II and III ICEs were found to integrate adjacent to tRNA genes, while type I ICEs integrate into intergenic regions or into a gene. The ICEs carry various cargo genes, including transcription regulator genes and genes conferring antibiotic resistance. The adaptive immune CRISPR-Cas system was found in nine strains, including five strains in which CRISPR-Cas machinery and ICEs coexist at different locations on the same chromosome. One ICE-derived spacer was present in the CRISPR locus in one strain. ICE distribution in the strains showed no geographic or temporal patterns. The ICEs in E. anophelis differ in architecture and sequence from CTnDOT, a well-studied ICE prevalent in Bacteroides spp. The categorization of ICEs will facilitate further investigations of the impact of ICE on virulence, genome epidemiology, and adaptive genomics of E. anophelis. IMPORTANCEElizabethkingia anophelis is an opportunistic human pathogen, and the genetic diversity between strains from around the world becomes apparent as more genomes are sequenced. Genome comparison identified three types of putative ICEs in 31 of 36 strains. The diversity of ICEs suggests that they had different origins. One of the ICEs was discovered previously from a large E. anophelis outbreak in Wisconsin in the United States; this ICE has integrated into the mutY gene of the outbreak strain, creating a mutator phenotype. Similar to ICEs found in many bacterial species, ICEs in E. anophelis carry various cargo genes that enable recipients to resist antibiotics and adapt to various ecological niches. The adaptive immune CRISPR-Cas system is present in nine of 36 strains. An ICE-derived spacer was found in the CRISPR locus in a strain that has no ICE, suggesting a past encounter and effective defense against ICE.
Collapse
|
14
|
Wang M, Gao H, Lin N, Zhang Y, Huang N, Walker ED, Ming D, Chen S, Hu S. The antibiotic resistance and pathogenicity of a multidrug-resistant Elizabethkingia anophelis isolate. Microbiologyopen 2019; 8:e804. [PMID: 30891912 PMCID: PMC6854844 DOI: 10.1002/mbo3.804] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Elizabethkingia anophelis 12012‐2 PRCM was isolated from a patient with multiple organ dysfunction syndrome and lower respiratory tract infection in China. Minimum inhibitory concentration (MIC) analysis demonstrated that it was resistant to 20 antibiotics including trimethoprim/sulfamethoxazole and ciprofloxacin, which were effective for the elimination of other Elizabethkingia infections. To investigate multidrug resistance and pathogenicity mechanisms, we analyzed genome features of 12012‐2 PRCM and compared them to the other Elizabethkingia species. The draft genome size was 4.02 Mb with a GC content of 32%, comparable to that of other E. anophelis strains. Phylogenetic analysis showed that E. anophelis 12012‐2 PRCM formed a sister group with E. anophelis 502, distinct from clades formed by other clinical and environmental E. anophelis isolates. E. anophelis 12012‐2 PRCM contained multiple copies of β‐lactamase genes as well as genes predicted to function in antimicrobial efflux. It also contained 92 genes that were potentially involved in virulence, disease, and defense, and were associated with resistance and pathogenicity. Comparative genomic analysis showed high homology among three clinical and two environmental E. anophelis strains having a variety of similar antibiotic resistance and virulence factor genes, and similar genomic structure. Applications of this analysis will contribute to understanding the antibiotic resistance and pathogenic mechanisms of E. anophelis infections, which will assist in the management of infections as it increases in prevalence.
Collapse
Affiliation(s)
- Mingxi Wang
- Yun Leung Laboratory for Molecular Diagnostics, School of Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Hongzhi Gao
- Clinical Center for Molecular Diagnosis and Therapy, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
| | - Nanfei Lin
- Clinical Center for Molecular Diagnosis and Therapy, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
| | - Yaping Zhang
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
| | - Nan Huang
- Quanzhou Medical College, Quanzhou, Fujian, China
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Desong Ming
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Shaohua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Jian MJ, Perng CL, Sun JR, Cheng YH, Chung HY, Cheng YH, Lee SY, Kuo SC, Shang HS. Multicentre MDR Elizabethkingia anophelis isolates: Novel random amplified polymorphic DNA with capillary electrophoresis systems to rapid molecular typing compared to genomic epidemiology analysis. Sci Rep 2019; 9:1806. [PMID: 30755714 PMCID: PMC6372666 DOI: 10.1038/s41598-019-38819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/08/2019] [Indexed: 11/25/2022] Open
Abstract
Elizabethkingia species are ubiquitous bacteria that uncommonly cause human infection. Elizabethkingia anophelis was first identified in 2011 from the mosquito Anopheles gambiae. The currently available bacterial typing systems vary greatly with respect to labour, cost, reliability, and ability to discriminate among bacterial strains. Polymerase chain reaction (PCR)-based fingerprinting using random amplified polymorphic DNA (RAPD) is commonly used to identify genetic markers. To our knowledge, no system coupling RAPD-PCR and capillary gel electrophoresis (CGE) has been utilized for the epidemiological typing of E. anophelis. Thus, the aim of the present study was to establish a reliable and reproducible molecular typing technique for E. anophelis isolates based on a multi-centre assessment of bacteraemia patients. Here, we used a rapid CGE-light-emitting diode-induced fluorescence (LEDIF)-based method in conjunction with RAPD-PCR to genotype E. anophelis with a high level of discrimination. All clinical isolates of E. anophelis were found to be typeable, and isolates from two hospitals formed two distinct clusters. The results demonstrated the potential of coupling RAPD and CGE as a rapid and efficient molecular typing tool, providing a reliable method for surveillance and epidemiological investigations of bacterial infections. The proposed method shows promise as a novel, cost-effective, high-throughput, first-pass typing method.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cherng-Lih Perng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsuan Cheng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yi Lee
- Division of Clinical Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hung-Sheng Shang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan. .,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
16
|
Zhang L, Liu B, Wang C. Pharmaceutical analysis of different antibiotic regimens in the treatment of lower respiratory tract infection. Exp Ther Med 2018; 16:2369-2374. [PMID: 30210589 PMCID: PMC6122520 DOI: 10.3892/etm.2018.6437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/29/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to discuss and compare the effects and expenses of different antibiotic regimens in the treatment of lower respiratory tract infection (LRTI). A retrospective analysis was performed on 200 patients diagnosed with LRTI and treated at the Department of Respiratory Medicine of Dongying People's Hospital from February 2015 to May 2017. The patients were randomly divided into Group A, Group B, Group C and Group D, with 50 cases in each group, and were treated with ceftriaxone sodium, ceftizoxime sodium, levofloxacin and azithromycin, respectively. Venous blood of patients was collected. White blood cells (WBC) of venous blood were detected using a hematology analyzer and C-reactive protein (CRP) was tested with latex immunoturbidimetry. Moreover, therapeutic effects and drug costs of four different antibiotics were compared. No adverse reactions occurred to patients in the four groups during the treatment process. The value at each time point after treatment was significantly decreased compared with that at the previous time point before treatment within the group (P<0.01). The treatment expenses of patients in Group A, Group B and Group D were significantly increased compared with those in Group C (P<0.01), the treatment expenses of patients in Group B and Group D were significantly increased compared with those in Group A (P<0.01) and the treatment expenses of patients in Group D were significantly increased compared with those in Group B (P<0.01). Ceftriaxone sodium, ceftizoxime sodium, levofloxacin and azithromycin all have a good antimicrobial efficacy. The treatment condition of LRTI can be dynamically monitored by WBC and CRP which can accurately reflect the progression condition of patients' illness and the treatment effect. In economic terms, the treatment cost of levofloxacin is the lowest; thus, it is worthy of clinical popularization and application.
Collapse
Affiliation(s)
- Lin Zhang
- Management of Hygienic Materials, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Benhong Liu
- Department of Respiratory Medicine, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Chunbin Wang
- Department of Pharmacy, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
17
|
Jian MJ, Cheng YH, Perng CL, Shang HS. Molecular typing and profiling of topoisomerase mutations causing resistance to ciprofloxacin and levofloxacin in Elizabethkingia species. PeerJ 2018; 6:e5608. [PMID: 30225179 PMCID: PMC6139017 DOI: 10.7717/peerj.5608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/19/2018] [Indexed: 12/02/2022] Open
Abstract
Objectives Several Elizabethkingia species often exhibit extensive antibiotic resistance, causing infections associated with severe morbidity and high mortality rates worldwide. In this study, we determined fluoroquinolone susceptibility profiles of clinical Elizabethkingia spp. isolates and investigated the resistance mechanisms. Methods In 2017–2018, 131 Elizabethkingia spp. isolates were recovered from specimens collected at tertiary care centers in northern Taiwan. Initial species identification using the Vitek MS system and subsequent verification by 16S rRNA sequencing confirmed the presence of Elizabethkingia anophelis (n = 111), E. miricola (n = 11), and E. meningoseptica (n = 9). Fluoroquinolone susceptibility was determined using the microbroth dilution method, and fluoroquinolone resistance genes were analyzed by sequencing. Results Among Elizabethkingia spp. isolates, 91% and 77% were resistant to ciprofloxacin and levofloxacin, respectively. The most prevalent alterations were two single mutations in GyrA, Ser83Ile, and Ser83Arg, detected in 76% of the isolates exhibiting fluoroquinolone MIC between 8 and 128 μg/ml. Another GyrA single mutation, Asp87Asn, was identified in two quinolone-resistant E. miricola strains. None of the isolates had alterations in GyrB, ParC, or ParE. We developed a high-resolution melting assay for rapid identification of the prevalent gyrA gene mutations. The genetic relationship between the isolates was evaluated by random amplified polymorphic DNA PCR that yielded diverse pulsotypes, indicating the absence of any temporal or spatial overlap among the patients during hospitalization. Conclusion Our analysis of fluoroquinolone-resistant Elizabethkingia spp. isolates provides information for further research on the variations of the resistance mechanism and potential clinical guidance for infection management.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cherng-Lih Perng
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Sheng Shang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|