1
|
Luo H, Qu X, Deng X, He L, Wu Y, Liu Y, He D, Yin J, Wang B, Gan F, Tang B, Tang XF. HtrAs are essential for the survival of the haloarchaeon Natrinema gari J7-2 in response to heat, high salinity, and toxic substances. Appl Environ Microbiol 2024; 90:e0204823. [PMID: 38289131 PMCID: PMC10880668 DOI: 10.1128/aem.02048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/24/2023] [Indexed: 02/22/2024] Open
Abstract
Bacterial and eukaryotic HtrAs can act as an extracytoplasmic protein quality control (PQC) system to help cells survive in stress conditions, but the functions of archaeal HtrAs remain unknown. Particularly, haloarchaea route most secretory proteins to the Tat pathway, enabling them to fold properly in well-controlled cytoplasm with cytosolic PQC systems before secretion. It is unclear whether HtrAs are required for haloarchaeal survival and stress response. The haloarchaeon Natrinema gari J7-2 encodes three Tat signal peptide-bearing HtrAs (NgHtrA, NgHtrB, and NgHtrC), and the signal peptides of NgHtrA and NgHtrC contain a lipobox. Here, the in vitro analysis reveals that the three HtrAs show different profiles of temperature-, salinity-, and metal ion-dependent proteolytic activities and could exhibit chaperone-like activities to prevent the aggregation of reduced lysozyme when their proteolytic activities are inhibited at low temperatures or the active site is disrupted. The gene deletion and complementation assays reveal that NgHtrA and NgHtrC are essential for the survival of strain J7-2 at elevated temperature and/or high salinity and contribute to the resistance of this haloarchaeon to zinc and inhibitory substances generated from tryptone. Mutational analysis shows that the lipobox mediates membrane anchoring of NgHtrA or NgHtrC, and both the membrane-anchored and free extracellular forms of the two enzymes are involved in the stress resistance of strain J7-2, depending on the stress conditions. Deletion of the gene encoding NgHtrB in strain J7-2 causes no obvious growth defect, but NgHtrB can functionally substitute for NgHtrA or NgHtrC under some conditions.IMPORTANCEHtrA-mediated protein quality control plays an important role in the removal of aberrant proteins in the extracytoplasmic space of living cells, and the action mechanisms of HtrAs have been extensively studied in bacteria and eukaryotes; however, information about the function of archaeal HtrAs is scarce. Our results demonstrate that three HtrAs of the haloarchaeon Natrinema gari J7-2 possess both proteolytic and chaperone-like activities, confirming that the bifunctional nature of HtrAs is conserved across all three domains of life. Moreover, we found that NgHtrA and NgHtrC are essential for the survival of strain J7-2 under stress conditions, while NgHtrB can serve as a substitute for the other two HtrAs under certain circumstances. This study provides the first biochemical and genetic evidence of the importance of HtrAs for the survival of haloarchaea in response to stresses.
Collapse
Affiliation(s)
- Hongyi Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoyi Qu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xi Deng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liping He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingxue Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| | - Xiao-Feng Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| |
Collapse
|
2
|
Auto- and Hetero-Catalytic Processing of the N-Terminal Propeptide Promotes the C-Terminal Fibronectin Type III Domain-Mediated Dimerization of a Thermostable Vpr-like Protease. Appl Environ Microbiol 2022; 88:e0150322. [PMID: 36250702 PMCID: PMC9642013 DOI: 10.1128/aem.01503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial Vpr-like proteases are extracellular multidomain subtilases with diverse functions and can form oligomers, but their maturation and oligomerization mechanisms remain to be elucidated. Here, we report a novel Vpr-like protease (BTV) from thermophilic bacterium Brevibacillus sp. WF146. The BTV precursor comprises a signal peptide, an N-terminal propeptide, a subtilisin-like catalytic domain with an inserted protease-associated (PA) domain, two tandem fibronectin type III domains (Fn1 and Fn2), and a C-terminal propeptide. The BTV proform (pro-BTV) could be autoprocessed into the mature form (mBTV) via two intermediates lacking the N- or C-terminal propeptide, respectively, and the C-terminal propeptide delays the autocatalytic maturation of the enzyme. By comparison, pro-BTV is more efficiently processed into mBTV by protease TSS from strain WF146. Purified mBTV is a Ca2+-dependent thermostable protease, showing optimal activity at 60°C and retaining more than 60% of activity after incubation at 60°C for 8 h. The PA domain is important for enzyme stability and contributes to the substrate specificity of BTV by restricting the access of protein substrates to the active site. The proform and mature form of BTV exist as a monomer and a homodimer, respectively, and the dimerization is mediated by the Fn1 and Fn2 domains. The N-terminal propeptide of BTV not only acts as intramolecular chaperone and enzymatic inhibitor but also inhibits the homodimerization of the enzyme. The removal of the N-terminal propeptide leads to a structural adjustment of the enzyme and thus promotes enzyme dimerization. IMPORTANCE Vpr-like proteases are widely distributed in bacteria and fungi and are involved in processing lantibiotics, degrading collagen, keratin, and fibrin, and pathogenesis of microbes. The dissection of the roles of individual domains in enzyme maturation and oligomerization is crucial for understanding the action mechanisms of these multidomain proteases. Our results demonstrate that hetero-catalytic maturation of the extracellular Vpr-like protease BTV of Brevibacillus sp. WF146 is more efficient than autocatalytic maturation of the enzyme. Moreover, we found that the C-terminal tandem fibronectin type III domains rather than the PA domain mediate the dimerization of mature BTV, while the N-terminal propeptide inhibits the dimerization of the BTV proform. This study provides new insight into the activation and oligomerization mechanisms of Vpr-like proteases.
Collapse
|
3
|
Sharma A, Balda S, Capalash N, Sharma P. Engineering multifunctional enzymes for agro-biomass utilization. BIORESOURCE TECHNOLOGY 2022; 347:126706. [PMID: 35033642 DOI: 10.1016/j.biortech.2022.126706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is a plentiful renewable resource that can be converted into a wide range of high-value-added industrial products. However, the complexity of its structural integrity is one of the major constraints and requires combinations of different fibrolytic enzymes for the cost-effective, industrially and environmentally feasible transformation. An interesting approach is constructing multifunctional enzymes, either in a single polypeptide or by joining multiple domains with linkers and performing diverse reactions simultaneously, in a single host. The production of such chimera proteins multiplies the advantages of different enzymatic reactions in a single setup, in lesser time, at lower production cost and with desirable and improved catalytic activities. This review embodies the various domain-tailoring and extracellular secretion strategies, possible solutions to their challenges, and efforts to experimentally connect different catalytic activities in a single host, as well as their applications.
Collapse
Affiliation(s)
- Aarjoo Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjeev Balda
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
4
|
Maturation process and characterization of a novel thermostable and halotolerant subtilisin-like protease with high collagenolytic but low gelatinolytic activity. Appl Environ Microbiol 2021; 88:e0218421. [DOI: 10.1128/aem.02184-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymatic degradation of collagen is of great industrial and environmental significance; however, little is known about thermophile-derived collagenolytic proteases. Here, we report a novel collagenolytic protease (TSS) from thermophilic
Brevibacillus
sp. WF146. The TSS precursor comprises a signal peptide, an N-terminal propeptide, a subtilisin-like catalytic domain, a β-jelly roll (βJR) domain, and a prepeptidase C-terminal (PPC) domain. The maturation of TSS involves a stepwise autoprocessing of the N-terminal propeptide and the PPC domain, and the βJR rather than the PPC domain is necessary for correct folding of the enzyme. Purified mature TSS displayed optimal activity at 70°C and pH 9.0, a half-life of 1.5 h at 75°C, and an increased thermostability with rising salinity up to 4 M. TSS possesses an increased number of surface acidic residues and ion pairs, as well as four Ca
2+
-binding sites, which contribute to its high thermostability and halotolerance. At high temperatures, TSS exhibited high activity toward insoluble type I collagen and azocoll, but showed a low gelatinolytic activity, with a strong preference for Arg and Gly at the P1 and P1’ positions, respectively. Both the βJR and PPC domains could bind but not swell collagen, and thus facilitate TSS-mediated collagenolysis via improving the accessibility of the enzyme to the substrate. Additionally, TSS has the ability to efficiently degrade fish scale collagen at high temperatures.
IMPORTANCE
Proteolytic degradation of collagen at high temperatures has the advantages of increasing degradation efficiency and minimizing the risk of microbial contamination. Reports on thermostable collagenolytic proteases are limited, and their maturation and catalytic mechanisms remain to be elucidated. Our results demonstrate that the thermophile-derived TSS matures in an autocatalytic manner, and represents one of the most thermostable collagenolytic proteases reported so far. At elevated temperatures, TSS prefers hydrolyzing insoluble heat-denatured collagen rather than gelatin, providing new insight into the mechanism of collagen degradation by thermostable collagenolytic proteases. Moreover, TSS has the potential to be used in recycling collagen-rich wastes such as fish scales.
Collapse
|
5
|
Xu K, Zhao Q, Jiang HZ, Mou XR, Chang YF, Cao YQ, Miao C, Wu R, Wen YP, Huang XB, Yan QG, Du SY, Cao SJ. Molecular and functional characterization of HtrA protein in Actinobacillus pleuropneumoniae. Vet Microbiol 2021; 257:109058. [PMID: 33862332 DOI: 10.1016/j.vetmic.2021.109058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/20/2021] [Indexed: 11/15/2022]
Abstract
Actinobacillus pleuropneumoniae (A.pleuropneumoniae) causes serious economic loss for the swine industry. A high-temperature requirements A (HtrA)-like protease and its homologs have been reported to be involved in protein quality control and expression of important immunoprotective antigens in many pathogens. In this study, we showed that HtrA of A.pleuropneumoniae exhibited both chaperone and proteolytic activities. Moreover, Outer membrane protein P5 (OmpP5) in A.pleuropneumoniae and Heat shock protein 90 (Hsp90) in porcine lung tissues were first discovered and identified as specific proteolytic substrates for rHtrA. The maximum cleavage activity occurs at 50 ℃ in a time-dependent manner. In addition, rHtrA mainly induced IgG 2a subtype of IgG and Th1 (IFN-γ, IL-2) response in a mice model, and promoted a significant proliferation of spleen lymphocytes compare with negative control (P < 0.05). The survival rates of 37.5 % were observed against A.pleuropneumoniae strain. Together, these data demonstrate that rHtrA plays a multi-functional role in A.pleuropneumoniae.
Collapse
Affiliation(s)
- Kui Xu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hong-Ze Jiang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Ran Mou
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Yu-Qin Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chang Miao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi-Ping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Bo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qi-Gui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sen-Yan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - San-Jie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
6
|
Xie X, Guo N, Xue G, Xie D, Yuan C, Harrison J, Li J, Jiang L, Huang M. Solution Structure of SpoIVB Reveals Mechanism of PDZ Domain-Regulated Protease Activity. Front Microbiol 2019; 10:1232. [PMID: 31244791 PMCID: PMC6581720 DOI: 10.3389/fmicb.2019.01232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/17/2019] [Indexed: 01/27/2023] Open
Abstract
Intramembrane proteases hydrolyze peptide bonds within the cell membrane as the decision-making step of various signaling pathways. Sporulation factor IV B protease (SpoIVB) and C-terminal processing proteases B (CtpB) play central roles in cellular differentiation via regulated intramembrane proteolysis (RIP) process which activates pro-σK processing at the σK checkpoint during spore formation. SpoIVB joins CtpB in belonging to the widespread family of PDZ-proteases, but much remains unclear about the molecular mechanisms and structure of SpoIVB. In this study, we expressed inactive SpoIVB (SpoIVBS378A) fused with maltose binding protein (MBP)-tag and obtained the solution structure of SpoIVBS378A from its small angle X-ray scattering (SAXS) data. The fusion protein is more soluble, stable, and yields higher expression compared to SpoIVB without the tag. MBP-tag not only facilitates modeling of the structure in the SAXS envelope but also evaluates reliability of the model. The solution structure of SpoIVBS378A fits closely with the experimental scattering data (χ2= 1.76). Comparing the conformations of PDZ-proteases indicates that SpoIVB adopts a PDZ-protease pattern similar to the high temperature requirement A proteases (HtrAs) rather than CtpB. We not only propose that SpoIVB uses a more direct and simple way to cleave the substrates than that of CtpB, but also that they work together as signal amplifiers to activate downstream proteins in the RIP pathway.
Collapse
Affiliation(s)
- Xie Xie
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Nannan Guo
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Guangpu Xue
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Daoqing Xie
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Joshua Harrison
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, China
| | | | | |
Collapse
|
7
|
Israeli M, Elia U, Rotem S, Cohen H, Tidhar A, Bercovich-Kinori A, Cohen O, Chitlaru T. Distinct Contribution of the HtrA Protease and PDZ Domains to Its Function in Stress Resilience and Virulence of Bacillus anthracis. Front Microbiol 2019; 10:255. [PMID: 30833938 PMCID: PMC6387919 DOI: 10.3389/fmicb.2019.00255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Anthrax is a lethal disease caused by the Gram-positive spore-producing bacterium Bacillus anthracis. We previously demonstrated that disruption of htrA gene, encoding the chaperone/protease HtrABA (High Temperature Requirement A of B. anthracis) results in significant virulence attenuation, despite unaffected ability of ΔhtrA strains (in which the htrA gene was deleted) to synthesize the key anthrax virulence factors: the exotoxins and capsule. B. anthracis ΔhtrA strains exhibited increased sensitivity to stress regimens as well as silencing of the secreted starvation-associated Neutral Protease A (NprA) and down-modulation of the bacterial S-layer. The virulence attenuation associated with disruption of the htrA gene was suggested to reflect the susceptibility of ΔhtrA mutated strains to stress insults encountered in the host indicating that HtrABA represents an important B. anthracis pathogenesis determinant. As all HtrA serine proteases, HtrABA exhibits a protease catalytic domain and a PDZ domain. In the present study we interrogated the relative impact of the proteolytic activity (mediated by the protease domain) and the PDZ domain (presumably necessary for the chaperone activity and/or interaction with substrates) on manifestation of phenotypic characteristics mediated by HtrABA. By inspecting the phenotype exhibited by ΔhtrA strains trans-complemented with either a wild-type, truncated (ΔPDZ), or non-proteolytic form (mutated in the catalytic serine residue) of HtrABA, as well as strains exhibiting modified chromosomal alleles, it is shown that (i) the proteolytic activity of HtrABA is essential for its N-terminal autolysis and subsequent release into the extracellular milieu, while the PDZ domain was dispensable for this process, (ii) the PDZ domain appeared to be dispensable for most of the functions related to stress resilience as well as involvement of HtrABA in assembly of the bacterial S-layer, (iii) conversely, the proteolytic activity but not the PDZ domain, appeared to be dispensable for the role of HtrABA in mediating up-regulation of the extracellular protease NprA under starvation stress, and finally (iv) in a murine model of anthrax, the HtrABA PDZ domain, was dispensable for manifestation of B. anthracis virulence. The unexpected dispensability of the PDZ domain may represent a unique characteristic of HtrABA amongst bacterial serine proteases of the HtrA family.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|