1
|
Xun M, Feng Z, Li H, Yao M, Wang H, Wei R, Jia J, Fan Z, Shi X, Lv Z, Zhang G. In vitro anti-Helicobacter pylori activity and antivirulence activity of cetylpyridinium chloride. PLoS One 2024; 19:e0300696. [PMID: 38603679 PMCID: PMC11008818 DOI: 10.1371/journal.pone.0300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
The primary treatment method for eradicating Helicobacter pylori (H. pylori) infection involves the use of antibiotic-based therapies. Due to the growing antibiotic resistance of H. pylori, there has been a surge of interest in exploring alternative therapies. Cetylpyridinium chloride (CPC) is a water-soluble and nonvolatile quaternary ammonium compound with exceptional broad-spectrum antibacterial properties. To date, there is no documented or described specific antibacterial action of CPC against H. pylori. Therefore, this study aimed to explore the in vitro activity of CPC against H. pylori and its potential antibacterial mechanism. CPC exhibited significant in vitro activity against H. pylori, with MICs ranging from 0.16 to 0.62 μg/mL and MBCs ranging from 0.31 to 1.24 μg/mL. CPC could result in morphological and physiological modifications in H. pylori, leading to the suppression of virulence and adherence genes expression, including flaA, flaB, babB, alpA, alpB, ureE, and ureF, and inhibition of urease activity. CPC has demonstrated in vitro activity against H. pylori by inhibiting its growth, inducing damage to the bacterial structure, reducing virulence and adherence factors expression, and inhibiting urease activity.
Collapse
Affiliation(s)
- Mingjin Xun
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Zhong Feng
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hui Li
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haibo Wang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Ruixia Wei
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Junwei Jia
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Zimao Fan
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Xiaoyan Shi
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Zhanzhu Lv
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| | - Guimin Zhang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- International Pharmaceutical Engineering Laboratory in Shandong Province, Shandong New Time Pharmaceutical Co., Ltd., Linyi, Shandong, China
| |
Collapse
|
2
|
Wang MC, Fan YH, Zhang YZ, Bregente CJB, Lin WH, Chen CA, Lin TP, Kao CY. Characterization of uropathogenic Escherichia coli phylogroups associated with antimicrobial resistance, virulence factor distribution, and virulence-related phenotypes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105493. [PMID: 37634856 DOI: 10.1016/j.meegid.2023.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
In this study, we compared the characteristics of different uropathogenic Escherichia coli phylogroups. A total of 844 E. coli isolated from urine were enrolled and the antimicrobial susceptibility of E. coli to 22 antibiotics was determined by disk diffusion test. The distribution of phylogroups and 20 virulence factor genes was determined by PCR. Phenotypes associated with bacterial virulence, including motility, biofilm formation, and the production of curli and siderophore, were examined. Phylogroup B2 was dominant in our isolates (64.8%), followed by phylogroups D (8.6%), B1 (7.8%), F (6.0%), C (4.5%), A (3.1%), untypable (2.8%), E (1.8%), and clade I (0.5%). The prevalence of multidrug-resistant strains was highest in phylogroup C (86.8%), followed by E (80.0%), F (75.0%), and D (71.2%). Moreover, 23.5% of the phylogroup F E. coli were extensively drug-resistant. Phylogroup B2 E. coli had an average of the highest virulence factor genes (10.1 genes/isolate). Compared to phylogroup B2 E. coli, phylogroups F and clade I E. coli had higher motility while phylogroup C E. coli had lower motility. >60% of phylogroups A and C E. coli showed very low curli production. In contrast, 14%, 10%, and 7%, of E. coli in phylogroups F, B2, and E, produced a very high amount of curli, respectively. Surprisingly, phylogroup A E. coli showed the highest virulence to larvae, followed by phylogroups B2 and C. In summary, we first characterized and revealed that the antimicrobial resistance, virulence gene distribution, motility, and curli production, were associated with in E. coli phylogroups.
Collapse
Affiliation(s)
- Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan
| | - Yu-Hua Fan
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Urology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Zhen Zhang
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Carl Jay Ballena Bregente
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-An Chen
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Urology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Hauke M, Metz F, Rapp J, Faass L, Bats SH, Radziej S, Link H, Eisenreich W, Josenhans C. Helicobacter pylori Modulates Heptose Metabolite Biosynthesis and Heptose-Dependent Innate Immune Host Cell Activation by Multiple Mechanisms. Microbiol Spectr 2023; 11:e0313222. [PMID: 37129481 PMCID: PMC10269868 DOI: 10.1128/spectrum.03132-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Heptose metabolites including ADP-d-glycero-β-d-manno-heptose (ADP-heptose) are involved in bacterial lipopolysaccharide and cell envelope biosynthesis. Recently, heptoses were also identified to have potent proinflammatory activity on human cells as novel microbe-associated molecular patterns. The gastric pathogenic bacterium Helicobacter pylori produces heptose metabolites, which it transports into human cells through its Cag type 4 secretion system. Using H. pylori as a model, we have addressed the question of how proinflammatory ADP-heptose biosynthesis can be regulated by bacteria. We have characterized the interstrain variability and regulation of heptose biosynthesis genes and the modulation of heptose metabolite production by H. pylori, which impact cell-autonomous proinflammatory human cell activation. HldE, a central enzyme of heptose metabolite biosynthesis, showed strong sequence variability between strains and was also variably expressed between strains. Amounts of gene transcripts in the hldE gene cluster displayed intrastrain and interstrain differences, were modulated by host cell contact and the presence of the cag pathogenicity island, and were affected by carbon starvation regulator A (CsrA). We reconstituted four steps of the H. pylori lipopolysaccharide (LPS) heptose biosynthetic pathway in vitro using recombinant purified GmhA, HldE, and GmhB proteins. On the basis of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, the structures of major reaction products were identified as β-d-ADP-heptose and β-heptose-1-monophosphate. A proinflammatory heptose-monophosphate variant was also identified for the first time as a novel cell-active product in H. pylori bacteria. Separate purified HldE subdomains and variant HldE allowed us to uncover additional strain variation in generating heptose metabolites. IMPORTANCE Bacterial heptose metabolites, intermediates of lipopolysaccharide (LPS) biosynthesis, are novel microbe-associated molecular patterns (MAMPs) that activate proinflammatory signaling. In the gastric pathogen Helicobacter pylori, heptoses are transferred into host cells by the Cag type IV secretion system, which is also involved in carcinogenesis. Little is known about how H. pylori, which is highly strain variable, regulates heptose biosynthesis and downstream host cell activation. We report here that the regulation of proinflammatory heptose production by H. pylori is strain specific. Heptose gene cluster activity is modulated by the presence of an active cag pathogenicity island (cagPAI), contact with human cells, and the carbon starvation regulator A. Reconstitution with purified biosynthesis enzymes and purified bacterial lysates allowed us to biochemically characterize heptose pathway products, identifying a heptose-monophosphate variant as a novel proinflammatory metabolite. These findings emphasize that the bacteria use heptose biosynthesis to fine-tune inflammation and also highlight opportunities to mine the heptose biosynthesis pathway as a potential therapeutic target against infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Martina Hauke
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Felix Metz
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Johanna Rapp
- Bacterial Metabolomics, CMFI, University Tübingen, Tübingen, Germany
| | - Larissa Faass
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Simon H. Bats
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Sandra Radziej
- Bavarian NMR Center–Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Hannes Link
- Bacterial Metabolomics, CMFI, University Tübingen, Tübingen, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center–Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| |
Collapse
|
4
|
Phoka T, Fule L, Da Fonseca JP, Cokelaer T, Picardeau M, Patarakul K. Investigating the role of the carbon storage regulator A (CsrA) in Leptospira spp. PLoS One 2021; 16:e0260981. [PMID: 34898610 PMCID: PMC8668096 DOI: 10.1371/journal.pone.0260981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
Carbon Storage Regulator A (CsrA) is a well-characterized post-transcriptional global regulator that plays a critical role in response to environmental changes in many bacteria. CsrA has been reported to regulate several metabolic pathways, motility, biofilm formation, and virulence-associated genes. The role of csrA in Leptospira spp., which are able to survive in different environmental niches and infect a wide variety of reservoir hosts, has not been characterized. To investigate the role of csrA as a gene regulator in Leptospira, we generated a L. biflexa csrA deletion mutant (ΔcsrA) and csrA overexpressing Leptospira strains. The ΔcsrA L. biflexa displayed poor growth under starvation conditions. RNA sequencing revealed that in rich medium only a few genes, including the gene encoding the flagellar filament protein FlaB3, were differentially expressed in the ΔcsrA mutant. In contrast, 575 transcripts were differentially expressed when csrA was overexpressed in L. biflexa. Electrophoretic mobility shift assay (EMSA) confirmed the RNA-seq data in the ΔcsrA mutant, showing direct binding of recombinant CsrA to flaB3 mRNA. In the pathogen L. interrogans, we were not able to generate a csrA mutant. We therefore decided to overexpress csrA in L. interrogans. In contrast to the overexpressing strain of L. biflexa, the overexpressing L. interrogans strain had poor motility on soft agar. The overexpressing strain of L. interrogans also showed significant upregulation of the flagellin flaB1, flaB2, and flaB4. The interaction of L. interrogans rCsrA and flaB4 was confirmed by EMSA. Our results demonstrated that CsrA may function as a global regulator in Leptospira spp. under certain conditions that cause csrA overexpression. Interestingly, the mechanisms of action and gene targets of CsrA may be different between non-pathogenic and pathogenic Leptospira strains.
Collapse
Affiliation(s)
- Theerapat Phoka
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Lenka Fule
- Institut Pasteur, Biology of Spirochetes Unit, French National Reference Centre for Leptospirosis, Paris, France
| | - Juliana Pipoli Da Fonseca
- Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Thomas Cokelaer
- Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique – Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, French National Reference Centre for Leptospirosis, Paris, France
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
- * E-mail: ,
| |
Collapse
|
5
|
Kao CY, Kuo PY, Liao HW. Untargeted Microbial Exometabolomics and Metabolomics Analysis of Helicobacter pylori J99 and jhp0106 Mutant. Metabolites 2021; 11:metabo11120808. [PMID: 34940566 PMCID: PMC8707867 DOI: 10.3390/metabo11120808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Untargeted metabolomic profiling provides the opportunity to comprehensively explore metabolites of interest. Herein, we investigated the metabolic pathways associated with Jhp0106, a glycosyltransferase enzyme in Helicobacter pylori. Through untargeted exometabolomic and metabolomic profiling, we identified 9 and 10 features with significant differences in the culture media and pellets of the wild-type (WT) J99 and jhp0106 mutant (Δjhp0106). After tentative identification, several phosphatidylethanolamines (PEs) were identified in the culture medium, the levels of which were significantly higher in WT J99 than in Δjhp0106. Moreover, the reduced lysophosphatidic acid absorption from the culture medium and the reduced intrinsic diacylglycerol levels observed in Δjhp0106 indicate the possibility of reduced PE synthesis in Δjhp0106. The results suggest an association of the PE synthesis pathway with flagellar formation in H. pylori. Further investigations should be conducted to confirm this finding and the roles of the PE synthesis pathway in flagellar formation. This study successfully demonstrates the feasibility of the proposed extraction procedure and untargeted exometabolomic and metabolomic profiling strategies for microbial metabolomics. They may also extend our understanding of metabolic pathways associated with flagellar formation in H. pylori.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Science, National Yang Ming Chiao Tung University, Taipei 122, Taiwan; (C.-Y.K.); (P.-Y.K.)
| | - Pei-Yun Kuo
- Institute of Microbiology and Immunology, School of Life Science, National Yang Ming Chiao Tung University, Taipei 122, Taiwan; (C.-Y.K.); (P.-Y.K.)
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 122, Taiwan
- Correspondence: ; Tel.: +886-2826-7927
| |
Collapse
|
6
|
Kim HW, Woo HJ, Yang JY, Kim JB, Kim SH. Hesperetin Inhibits Expression of Virulence Factors and Growth of Helicobacter pylori. Int J Mol Sci 2021; 22:ijms221810035. [PMID: 34576198 PMCID: PMC8472136 DOI: 10.3390/ijms221810035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a bacterium known to infect the human stomach. It can cause various gastrointestinal diseases including gastritis and gastric cancer. Hesperetin is a major flavanone component contained in citrus fruits. It has been reported to possess antibacterial, antioxidant, and anticancer effects. However, the antibacterial mechanism of hesperetin against H. pylori has not been reported yet. Therefore, the objective of this study was to determine the inhibitory effects of hesperetin on H. pylori growth and its inhibitory mechanisms. The results of this study showed that hesperetin inhibits the growth of H. pylori reference strains and clinical isolates. Hesperetin inhibits the expression of genes in replication (dnaE, dnaN, dnaQ, and holB) and transcription (rpoA, rpoB, rpoD, and rpoN) machineries of H. pylori. Hesperetin also inhibits the expression of genes related to H. pylori motility (flhA, flaA, and flgE) and adhesion (sabA, alpA, alpB, hpaA, and hopZ). It also inhibits the expression of urease. Hespereti n downregulates major virulence factors such as cytotoxin-associated antigen A (CagA) and vacuolating cytotoxin A (VacA) and decreases the translocation of CagA and VacA proteins into gastric adenocarcinoma (AGS) cells. These results might be due to decreased expression of the type IV secretion system (T4SS) and type V secretion system (T5SS) involved in translocation of CagA and VacA, respectively. The results of this study indicate that hesperetin has antibacterial effects against H. pylori. Thus, hesperetin might be an effective natural product for the eradication of H. pylori.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.W.K.); (J.-B.K.)
| | - Hyun Jun Woo
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea;
| | - Ji Yeong Yang
- Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea;
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.W.K.); (J.-B.K.)
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea;
- Correspondence:
| |
Collapse
|
7
|
Tejada-Arranz A, De Reuse H. Riboregulation in the Major Gastric Pathogen Helicobacter pylori. Front Microbiol 2021; 12:712804. [PMID: 34335549 PMCID: PMC8322730 DOI: 10.3389/fmicb.2021.712804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterial pathogen that colonizes the stomach of about half of the human population worldwide. Infection by H. pylori is generally acquired during childhood and this bacterium rapidly establishes a persistent colonization. H. pylori causes chronic gastritis that, in some cases, progresses into peptic ulcer disease or adenocarcinoma that is responsible for about 800,000 deaths in the world every year. H. pylori has evolved efficient adaptive strategies to colonize the stomach, a particularly hostile acidic environment. Few transcriptional regulators are encoded by the small H. pylori genome and post-transcriptional regulation has been proposed as a major level of control of gene expression in this pathogen. The transcriptome and transcription start sites (TSSs) of H. pylori strain 26695 have been defined at the genome level. This revealed the existence of a total of 1,907 TSSs among which more than 900 TSSs for non-coding RNAs (ncRNAs) including 60 validated small RNAs (sRNAs) and abundant anti-sense RNAs, few of which have been experimentally validated. An RNA degradosome was shown to play a central role in the control of mRNA and antisense RNA decay in H. pylori. Riboregulation, genetic regulation by RNA, has also been revealed and depends both on antisense RNAs and small RNAs. Known examples will be presented in this review. Antisense RNA regulation was reported for some virulence factors and for several type I toxin antitoxin systems, one of which controls the morphological transition of H. pylori spiral shape to round coccoids. Interestingly, the few documented cases of small RNA-based regulation suggest that their mechanisms do not follow the same rules that were well established in the model organism Escherichia coli. First, the genome of H. pylori encodes none of the two well-described RNA chaperones, Hfq and ProQ that are important for riboregulation in several organisms. Second, some of the reported small RNAs target, through "rheostat"-like mechanisms, repeat-rich stretches in the 5'-untranslated region of genes encoding important virulence factors. In conclusion, there are still many unanswered questions about the extent and underlying mechanisms of riboregulation in H. pylori but recent publications highlighted original mechanisms making this important pathogen an interesting study model.
Collapse
Affiliation(s)
- Alejandro Tejada-Arranz
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Hilde De Reuse
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, Paris, France
| |
Collapse
|
8
|
Yang K, Kao C, Su MS, Wang S, Chen Y, Hu S, Chen J, Teng C, Tsai P, Wu J. Glycosyltransferase Jhp0106 (PseE) contributes to flagellin maturation in Helicobacter pylori. Helicobacter 2021; 26:e12787. [PMID: 33586844 PMCID: PMC7988653 DOI: 10.1111/hel.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Flagella-mediated motility is both a crucial virulence determinant of Helicobacter pylori and a factor associated with gastrointestinal diseases. Flagellar formation requires flagellins to be glycosylated with pseudaminic acid (Pse), a process that has been extensively studied. However, the transfer of Pse to flagellins remains poorly understood. Therefore, the aim of this study is to characterize a putative glycosyltransferase jhp0106 in flagellar formation. MATERIALS AND METHODS Western blotting and chemical deglycosylation were performed to examine FlaA glycosylation. Protein structural analyses were executed to identify the active site residues of Jhp0106, while the Jhp0106-FlaA interaction was examined using a bacterial two-hybrid assay. Lastly, site-directed mutants with mutated active site residues in the jhp0106 gene were generated and investigated using a motility assay, Western blotting, cDNA-qPCR analysis, and electron microscopic examination. RESULTS Loss of flagellar formation in the Δjhp0106 mutant was confirmed to be associated with non-glycosylated FlaA. Furthermore, three active site residues of Jhp0106 (S350, F376, and E415) were identified within a potential substrate-binding region. The interaction between FlaA and Jhp0106, Jhp0106::S350A, Jhp0106::F376A, or Jhp0106::E415A was determined to be significant. As well, the substitution of S350A, F376A, or E415A in the site-directed Δjhp0106 mutants resulted in impaired motility, deficient FlaA glycosylation, and lacking flagella. However, these phenotypic changes were regardless of flaA expression, implying an indefinite proteolytic degradation of FlaA occurred. CONCLUSIONS This study demonstrated that Jhp0106 (PseE) binds to FlaA mediating FlaA glycosylation and flagellar formation. Our discovery of PseE has revealed a new glycosyltransferase family responsible for flagellin glycosylation in pathogens.
Collapse
Affiliation(s)
- Kai‐Yuan Yang
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Cheng‐Yen Kao
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan,Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Marcia Shu‐Wei Su
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Shuying Wang
- Department of Microbiology and ImmunologyCollege of MedicineNational Cheng‐Kung UniversityTainanTaiwan
| | - Yueh‐Lin Chen
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| | - Shiau‐Ting Hu
- Institute of Microbiology and ImmunologySchool of Life ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Jenn‐Wei Chen
- Department of Microbiology and ImmunologyCollege of MedicineNational Cheng‐Kung UniversityTainanTaiwan
| | - Ching‐Hao Teng
- Institute of Molecular MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Pei‐Jane Tsai
- Department of Medical Laboratory Science and BiotechnologyCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Jiunn‐Jong Wu
- Department of Biotechnology and Laboratory Science in MedicineSchool of Biomedical Science and EngineeringNational Yang‐Ming UniversityTaipeiTaiwan
| |
Collapse
|
9
|
Role of RpoN from Labrenzia aggregata LZB033 ( Rhodobacteraceae) in Formation of Flagella and Biofilms, Motility, and Environmental Adaptation. Appl Environ Microbiol 2019; 85:AEM.02844-18. [PMID: 30709822 DOI: 10.1128/aem.02844-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Labrenzia aggregata LZB033 (Rhodobacteraceae), which produces dimethylsulfoniopropionate (DMSP) and reduces nitrate to nitrogen, was isolated from seawater of the East China Sea. Its genome encodes a large number of transcriptional regulators which may be important for its adaptation to diverse marine environments. The alternative σ54 factor (RpoN) is a central regulator of many bacteria, regulating the transcription of multiple genes and controlling important cellular functions. However, the exact role of RpoN in Labrenzia spp. is unknown. In this study, an in-frame rpoN deletion mutant was constructed in LZB033, and the function of RpoN was determined. To systematically identify RpoN-controlled genes, we performed a detailed analysis of gene expression differences between the wild-type strain and the ΔrpoN mutant using RNA sequencing. The expression of 175 genes was shown to be controlled by RpoN. Subsequent phenotypic assays showed that the ΔrpoN mutant was attenuated in flagellar biosynthesis and swimming motility, utilized up to 13 carbon substrates differently, lacked the ability to assimilate malic acid, and displayed markedly decreased biofilm formation. In addition, stress response assays showed that the ΔrpoN mutant was impaired in the ability to survive under different challenge conditions, including osmotic stress, oxidative stress, temperature changes, and acid stress. Moreover, both the DMSP synthesis and catabolism rates of LZB033 decreased after rpoN was knocked out. Our work provides essential insight into the regulatory function of RpoN, revealing that RpoN is a key determinant for LZB033 flagellar formation, motility, biofilm formation, and environmental fitness, as well as DMSP production and degradation.IMPORTANCE This study established an in-frame gene deletion method in the alphaproteobacterium Labrenzia aggregata LZB033 and generated an rpoN gene mutant. A comparison of the transcriptomes and phenotypic characteristics between the mutant and wild-type strains confirmed the role of RpoN in L. aggregata LZB033 flagellar formation, motility, biofilm formation, and carbon usage. Most importantly, RpoN is a key factor for survival under different environmental challenge conditions. Furthermore, the ability to synthesize and metabolize dimethylsulfoniopropionate (DMSP) was related to RpoN. These features revealed RpoN to be an important regulator of stress resistance and survival for L. aggregata LZB033 in marine environments.
Collapse
|
10
|
Wang S, Yang F, Yang B. Global effect of CsrA on gene expression in enterohemorrhagic Escherichia coli O157:H7. Res Microbiol 2017; 168:700-709. [PMID: 28870757 DOI: 10.1016/j.resmic.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/25/2023]
Abstract
The post-transcriptional regulator CsrA regulates multiple unrelated processes such as central carbon metabolism, motility, biofilm formation and bacterial virulence in different bacteria. However, regulation by CsrA in enterohemorrhagic Escherichia coli (EHEC) O157:H7 is still largely unknown. In this study, we performed a detailed analysis of gene expression differences between the EHEC O157:H7 wild-type strain and a corresponding csrA::kan mutant using RNA-seq technology. Genes whose expression was affected by CsrA were identified and grouped into different clusters of orthologous group categories. Genes located in the locus of enterocyte effacement (LEE) pathogenicity island were significantly upregulated, whereas expression of flagella-related genes was significantly reduced in the csrA::kan mutant. Subsequent bacterial adherence and motility assays showed that inactivation of CsrA in EHEC O157:H7 resulted in a significant increase in bacterial adherence to host epithelial cells, with a concomitant loss of swimming motility on semi-solid agar plates. Furthermore, we also found that CsrA regulates genes not previously identified in other bacterial species, including genes encoding cytochrome oxidases and those required for nitrogen metabolism. Our results provide essential insight into the regulatory function of CsrA.
Collapse
Affiliation(s)
- Shaomeng Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.
| | - Fan Yang
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin 300192, PR China.
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
11
|
Abstract
As Helicobacter pylori infects half the world's population and displays an extensive intraspecies diversity, genomics is a powerful tool to understand evolution and disease, to identify factors that confer higher risk of severe sequelae, and to find new approaches for therapy both among bacterial and host targets. In line with these objectives, this review article summarizes the major findings in Helicobacter genomics in papers published between April 2016 and March 2017.
Collapse
Affiliation(s)
- Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Philippe Lehours
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
| | - Filipa F Vale
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|