1
|
Shilpha J, Lee J, Kwon JS, Lee HA, Nam JY, Jang H, Kang WH. An improved bacterial mRNA enrichment strategy in dual RNA sequencing to unveil the dynamics of plant-bacterial interactions. PLANT METHODS 2024; 20:99. [PMID: 38951818 PMCID: PMC11218159 DOI: 10.1186/s13007-024-01227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Dual RNA sequencing is a powerful tool that enables a comprehensive understanding of the molecular dynamics underlying plant-microbe interactions. RNA sequencing (RNA-seq) poses technical hurdles in the transcriptional analysis of plant-bacterial interactions, especially in bacterial transcriptomics, owing to the presence of abundant ribosomal RNA (rRNA), which potentially limits the coverage of essential transcripts. Therefore, to achieve cost-effective and comprehensive sequencing of the bacterial transcriptome, it is imperative to devise efficient methods for eliminating rRNA and enhancing the proportion of bacterial mRNA. In this study, we modified a strand-specific dual RNA-seq method with the goal of enriching the proportion of bacterial mRNA in the bacteria-infected plant samples. The enriched method involved the sequential separation of plant mRNA by poly A selection and rRNA removal for bacterial mRNA enrichment followed by strand specific RNA-seq library preparation steps. We assessed the efficiency of the enriched method in comparison to the conventional method by employing various plant-bacterial interactions, including both host and non-host resistance interactions with pathogenic bacteria, as well as an interaction with a beneficial rhizosphere associated bacteria using pepper and tomato plants respectively. RESULTS In all cases of plant-bacterial interactions examined, an increase in mapping efficiency was observed with the enriched method although it produced a lower read count. Especially in the compatible interaction with Xanthmonas campestris pv. Vesicatoria race 3 (Xcv3), the enriched method enhanced the mapping ratio of Xcv3-infected pepper samples to its own genome (15.09%; 1.45-fold increase) and the CDS (8.92%; 1.49-fold increase). The enriched method consistently displayed a greater number of differentially expressed genes (DEGs) than the conventional RNA-seq method at all fold change threshold levels investigated, notably during the early stages of Xcv3 infection in peppers. The Gene Ontology (GO) enrichment analysis revealed that the DEGs were predominantly enriched in proteolysis, kinase, serine type endopeptidase and heme binding activities. CONCLUSION The enriched method demonstrated in this study will serve as a suitable alternative to the existing RNA-seq method to enrich bacterial mRNA and provide novel insights into the intricate transcriptomic alterations within the plant-bacterial interplay.
Collapse
Affiliation(s)
- Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun-Ah Lee
- Division of Smart Horticulture, Yonam College, Cheonan, 31005, Republic of Korea
| | - Jae-Young Nam
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hee Kang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
2
|
Gosain TP, Chugh S, Rizvi ZA, Chauhan NK, Kidwai S, Thakur KG, Awasthi A, Singh R. Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs. Nat Commun 2024; 15:5467. [PMID: 38937463 PMCID: PMC11211403 DOI: 10.1038/s41467-024-49246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
The genome of Mycobacterium tuberculosis encodes for a large repertoire of toxin-antitoxin systems. In the present study, MenT3 and MenT4 toxins belonging to MenAT subfamily of TA systems have been functionally characterized. We demonstrate that ectopic expression of these toxins inhibits bacterial growth and this is rescued upon co-expression of their cognate antitoxins. Here, we show that simultaneous deletion of menT3 and menT4 results in enhanced susceptibility of M. tuberculosis upon exposure to oxidative stress and attenuated growth in guinea pigs and mice. We observed reduced expression of transcripts encoding for proteins that are essential or required for intracellular growth in mid-log phase cultures of ΔmenT4ΔT3 compared to parental strain. Further, the transcript levels of proteins involved in efficient bacterial clearance were increased in lung tissues of ΔmenT4ΔT3 infected mice relative to parental strain infected mice. We show that immunization of mice and guinea pigs with ΔmenT4ΔT3 confers significant protection against M. tuberculosis infection. Remarkably, immunization of mice with ΔmenT4ΔT3 results in increased antigen-specific TH1 bias and activated memory T cell response. We conclude that MenT3 and MenT4 are important for M. tuberculosis pathogenicity and strains lacking menT3 and menT4 have the potential to be explored further as vaccine candidates.
Collapse
Affiliation(s)
- Tannu Priya Gosain
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saurabh Chugh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Neeraj Kumar Chauhan
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saqib Kidwai
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| |
Collapse
|
3
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Koorakula R, Ghanbari M, Schiavinato M, Wegl G, Dohm JC, Domig KJ. Storage media and RNA extraction approaches substantially influence the recovery and integrity of livestock fecal microbial RNA. PeerJ 2022; 10:e13547. [PMID: 35694379 PMCID: PMC9186325 DOI: 10.7717/peerj.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background There is growing interest in understanding gut microbiome dynamics, to increase the sustainability of livestock production systems and to better understand the dynamics that regulate antibiotic resistance genes (i.e., the resistome). High-throughput sequencing of RNA transcripts (RNA-seq) from microbial communities (metatranscriptome) allows an unprecedented opportunity to analyze the functional and taxonomical dynamics of the expressed microbiome and emerges as a highly informative approach. However, the isolation and preservation of high-quality RNA from livestock fecal samples remains highly challenging. This study aimed to determine the impact of the various sample storage and RNA extraction strategies on the recovery and integrity of microbial RNA extracted from selected livestock (chicken and pig) fecal samples. Methods Fecal samples from pigs and chicken were collected from conventional slaughterhouses. Two different storage buffers were used at two different storage temperatures. The extraction of total RNA was done using four different commercially available kits and RNA integrity/quality and concentration were measured using a Bioanalyzer 2100 system with RNA 6000 Nano kit (Agilent, Santa Clara, CA, USA). In addition, RT-qPCR was used to assess bacterial RNA quality and the level of host RNA contamination. Results The quantity and quality of RNA differed by sample type (i.e., either pig or chicken) and most significantly by the extraction kit, with differences in the extraction method resulting in the least variability in pig feces samples and the most variability in chicken feces. Considering a tradeoff between the RNA yield and the RNA integrity and at the same time minimizing the amount of host RNA in the sample, a combination of storing the fecal samples in RNALater at either 4 °C (for 24 h) or -80 °C (up to 2 weeks) with extraction with PM kit (RNEasy Power Microbiome Kit) had the best performance for both chicken and pig samples. Conclusion Our findings provided a further emphasis on using a consistent methodology for sample storage, duration as well as a compatible RNA extraction approach. This is crucial as the impact of these technical steps can be potentially large compared with the real biological variability to be explained in microbiome and resistome studies.
Collapse
Affiliation(s)
- Raju Koorakula
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Vienna, Austria
- Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), Tulln an der Donau, Lower Austria, Austria
| | | | - Matteo Schiavinato
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Computational Biology, Vienna, Austria
| | | | - Juliane C. Dohm
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Computational Biology, Vienna, Austria
| | - Konrad J. Domig
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Vienna, Austria
| |
Collapse
|
5
|
Leibrock LB, Hofmann DM, Fuchs B, Birt A, Reinholz M, Guertler A, Frank K, Giunta RE, Egaña JT, Nickelsen J, Schenck TL, Moellhoff N. In vitro and in vivo detection of microbial gene expression in bioactivated scaffolds seeded with cyanobacteria. Lett Appl Microbiol 2022; 75:401-409. [PMID: 35587396 DOI: 10.1111/lam.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Dermal replacement materials bioactivated with cyanobacteria have shown promising potential for wound regeneration. To date, extraction of cyanobacteria RNA from seeded scaffolds has not been described. Aim of this study was to develop a method to isolate total RNA from bioactivated scaffolds and to propose a new approach in determining living bacteria based on real-time PCR. Transgenic synechococcus sp. PCC 7002 (tSyn7002) were seeded in liquid cultures or in scaffolds for dermal regeneration in vitro and in vivo for 7 days. RNA was extracted with a 260/280 ratio of ≥ 2. The small subunit of the 30S ribosome in prokaryotes (16S) and RNAse P protein (rnpA) were validated as reference transcripts for PCR analysis. Gene expression patterns differed in vitro and in vivo. Expression of 16S was significantly upregulated in scaffolds in vitro, as compared to liquid cultures, while rnpA expression was comparable. In vivo, both 16S and rnpA showed reduced expression compared to in vitro (16S: in vivo Ct value 13.21±0.32, in vitro 12.44±0.42; rnpA in vivo Ct value 19.87±0.41, in vitro 17.75±1.41). Overall, the results demonstrate rnpA and 16S expression after 7 days of implantation in vitro and in vivo, proving presence of living bacteria embedded in scaffolds using qPCR.
Collapse
Affiliation(s)
- Lars B Leibrock
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Germany
| | - Daniel M Hofmann
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Germany
| | - Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Germany
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Germany
| | - Markus Reinholz
- Department of Dermatology and Allergy, University Hospital of Munich, LMU, Germany
| | - Anne Guertler
- Department of Dermatology and Allergy, University Hospital of Munich, LMU, Germany
| | - Konstantin Frank
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Germany
| | - Riccardo E Giunta
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Germany
| | - José T Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joerg Nickelsen
- Molecular Plant Science, Department Biology I, LMU Munich, Munich, Germany
| | - Thilo L Schenck
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Germany.,Frauenklinik Dr. Geisenhofer GmbH, 80538, Munich, Germany
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Germany
| |
Collapse
|
6
|
Integrating microbiome, transcriptome and metabolome data to investigate gastric disease pathogenesis: a concise review. Expert Rev Mol Med 2021. [DOI: 10.1017/erm.2021.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Microbiome, the study of microbial communities in specific environments, has developed significantly since the Human Microbiome Project began. Microbiomes have been associated with changes within environmental niches and the development of various diseases. The development of high-throughput technology such as next-generation sequencing has also allowed us to perform transcriptome studies, which provide accurate functional profiling data. Metabolome studies, which analyse the metabolites found in the environment, are the most direct environmental condition indicator. Although each dataset provides valuable information on its own, the integration of multiple datasets provides a deeper understanding of the relationship between the host, agent and environment. Therefore, network analysis using multiple datasets might give a clearer understanding of disease pathogenesis.
Collapse
|
7
|
Robbe-Saule M, Foulon M, Poncin I, Esnault L, Varet H, Legendre R, Besnard A, Grzegorzewicz AE, Jackson M, Canaan S, Marsollier L, Marion E. Transcriptional adaptation of Mycobacterium ulcerans in an original mouse model: New insights into the regulation of mycolactone. Virulence 2021; 12:1438-1451. [PMID: 34107844 PMCID: PMC8204960 DOI: 10.1080/21505594.2021.1929749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Varet
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | | | - Anna E Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | | | | | | |
Collapse
|
8
|
Fukuta T, Tanaka D, Inoue S, Michiue K, Kogure K. Overcoming thickened pathological skin in psoriasis via iontophoresis combined with tight junction-opening peptide AT1002 for intradermal delivery of NF-κB decoy oligodeoxynucleotide. Int J Pharm 2021; 602:120601. [PMID: 33905867 DOI: 10.1016/j.ijpharm.2021.120601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
Transdermal delivery of nucleic acid therapeutics has been demonstrated to be effective for psoriasis treatment. We previously reported the utility of iontophoresis (IP) using weak electric current (0.3-0.5 mA/cm2) for intradermal delivery of nucleic acid therapeutics via weak electricity-mediated intercellular junction cleavage, and subsequent exertion of nucleic acid function. However, the thickened pathological skin in psoriasis hampers permeation of IP-administered macromolecules. Thus, approaches are needed to more strongly cleave intercellular spaces and overcome the psoriatic skin barrier. Herein, we applied a combination of tight junction-opening peptide AT1002 with IP, as synergistic effects of weak electricity-mediated intercellular junction cleavage and the tight junction-opening ability of AT1002 may help overcome thickened psoriatic skin and facilitate macromolecule delivery. Pretreatment with IP of an AT1002 analog exhibiting positively-charged moieties before fluorescence-labeled oligodeoxynucleotide IP resulted in the oligodeoxynucleotide permeation into psoriatic skin, whereas IP of the oligodeoxynucleotide alone did not. Moreover, psoriasis-induced upregulation of inflammatory cytokine mRNA levels was significantly suppressed by NF-κB decoy oligodeoxynucleotide IP combined with the AT1002 analog, resulting in amelioration of epidermis hyperplasia. These results suggest that synergistic effects of IP and an AT1002 analog can overcome thickened psoriatic skin and enable intradermal delivery of NF-κB decoy oligodeoxynucleotide for psoriasis treatment.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Daichi Tanaka
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Shinya Inoue
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Kohki Michiue
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan.
| |
Collapse
|
9
|
Ménard G, Rouillon A, Ghukasyan G, Emily M, Felden B, Donnio PY. Galleria mellonella Larvae as an Infection Model to Investigate sRNA-Mediated Pathogenesis in Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:631710. [PMID: 33954118 PMCID: PMC8089379 DOI: 10.3389/fcimb.2021.631710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
Small regulatory RNAs (sRNAs) are key players in bacterial regulatory networks. Monitoring their expression inside living colonized or infected organisms is essential for identifying sRNA functions, but few studies have looked at sRNA expression during host infection with bacterial pathogens. Insufficient in vivo studies monitoring sRNA expression attest to the difficulties in collecting such data, we therefore developed a non-mammalian infection model using larval Galleria mellonella to analyze the roles of Staphylococcus aureus sRNAs during larval infection and to quickly determine possible sRNA involvement in staphylococcal virulence before proceeding to more complicated animal testing. We began by using the model to test infected larvae for immunohistochemical evidence of infection as well as host inflammatory responses over time. To monitor sRNA expression during infection, total RNAs were extracted from the larvae and invading bacteria at different time points. The expression profiles of the tested sRNAs were distinct and they fluctuated over time, with expression of both sprD and sprC increased during infection and associated with mortality, while rnaIII expression remained barely detectable over time. A strong correlation was observed between sprD expression and the mortality. To confirm these results, we used sRNA-knockout mutants to investigate sRNA involvement in Staphylococcus aureus pathogenesis, finding that the decrease in death rates is delayed when either sprD or sprC was lacking. These results demonstrate the relevance of this G. mellonella model for investigating the role of sRNAs as transcriptional regulators involved in staphylococcal virulence. This insect model provides a fast and easy method for monitoring sRNA (and mRNA) participation in S. aureus pathogenesis, and can also be used for other human bacterial pathogens.
Collapse
Affiliation(s)
- Guillaume Ménard
- Univ Rennes, CHU Rennes, INSERM, BRM [Bacterial Regulatory RNAs and Medicine], SB2H (service de Bactériologie Hygiène-Hospitalière), UMR_S 1230, F-35000, Rennes, France
| | - Astrid Rouillon
- Univ Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, F-35000, Rennes, France
| | - Gevorg Ghukasyan
- Univ Rennes, CNRS, INSERM, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes), UMS 3480, US_S018, F-35000, Rennes, France
| | - Mathieu Emily
- Institut Agro, CNRS, Univ Rennes, IRMAR (Institut de recherche Mathématique de Rennes), UMR 6625, F-35000, Rennes, France
| | - Brice Felden
- Univ Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, F-35000, Rennes, France
| | - Pierre-Yves Donnio
- Univ Rennes, CHU Rennes, INSERM, BRM [Bacterial Regulatory RNAs and Medicine], SB2H (service de Bactériologie Hygiène-Hospitalière), UMR_S 1230, F-35000, Rennes, France
| |
Collapse
|
10
|
Kamminga T, Benis N, Martins Dos Santos V, Bijlsma JJE, Schaap PJ. Combined Transcriptome Sequencing of Mycoplasma hyopneumoniae and Infected Pig Lung Tissue Reveals Up-Regulation of Bacterial F1-Like ATPase and Down-Regulation of the P102 Cilium Adhesin in vivo. Front Microbiol 2020; 11:1679. [PMID: 32765473 PMCID: PMC7379848 DOI: 10.3389/fmicb.2020.01679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) causes enzootic pneumonia in pigs but it is still largely unknown which host-pathogen interactions enable persistent infection and cause disease. In this study, we analyzed the host and bacterial transcriptomes during infection using RNA sequencing. Comparison of the transcriptome of lung lesion tissue from infected pigs with lung tissue from non-infected animals, identified 424 differentially expressed genes (FDR < 0.01 and fold change > 1.5LOG2). These genes were part of the following major pathways of the immune system: interleukin signaling (type 4, 10, 13, and 18), regulation of Toll-like receptors by endogenous ligand and activation of C3 and C5 in the complement system. Besides analyzing the lung transcriptome, a sampling protocol was developed to obtain enough bacterial mRNA from infected lung tissue for RNA sequencing. This was done by flushing infected lobes in the lung, and subsequently enriching for bacterial RNA. On average, 2.2 million bacterial reads were obtained per biological replicate to analyze the bacterial in vivo transcriptome. We compared the in vivo bacterial transcriptome with the transcriptome of bacteria grown in vitro and identified 22 up-regulated and 30 down-regulated genes (FDR < 0.01 and fold change > 2LOG2). Six out of seven genes in the operon encoding the mycoplasma specific F1-like ATPase (MHP_RS02445-MHP_RS02475) and all genes in the operon MHP_RS01965-MHP_RS01990 with functions related to nucleotide metabolism, spermidine transport and glycerol-3-phoshate transport were up-regulated in vivo. Down-regulated in vivo were genes related to glycerol uptake, cilium adhesion (P102), cell division and myo-inositol metabolism. In addition to providing a novel method to isolate bacterial mRNA from infected lung, this study provided insights into changes in gene expression during infection, which could help development of novel treatment strategies against enzootic pneumonia caused by M. hyopneumoniae.
Collapse
Affiliation(s)
- Tjerko Kamminga
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands.,Bioprocess Technology and Support, MSD Animal Health, Boxmeer, Netherlands
| | - Nirupama Benis
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Vitor Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
11
|
Sanhueza D, Guégan JF, Jordan H, Chevillon C. Environmental Variations in Mycobacterium ulcerans Transcriptome: Absence of Mycolactone Expression in Suboptimal Environments. Toxins (Basel) 2019; 11:E146. [PMID: 30836720 PMCID: PMC6468629 DOI: 10.3390/toxins11030146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022] Open
Abstract
Buruli ulcer is a neglected tropical infectious disease, produced by the environmentally persistent pathogen Mycobacterium ulcerans (MU). Neither the ecological niche nor the exact mode of transmission of MU are completely elucidated. However, some environmental factors, such as the concentration in chitin and pH values, were reported to promote MU growth in vitro. We pursued this research using next generation sequencing (NGS) and mRNA sequencing to investigate potential changes in MU genomic expression profiles across in vitro environmental conditions known to be suitable for MU growth. Supplementing the growth culture medium in either chitin alone, calcium alone, or in both chitin and calcium significantly impacted the MU transcriptome and thus several metabolic pathways, such as, for instance, those involved in DNA synthesis or cell wall production. By contrast, some genes carried by the virulence plasmid and necessary for the production of the mycolactone toxin were expressed neither in control nor in any modified environments. We hypothesized that these genes are only expressed in stressful conditions. Our results describe important environmental determinants playing a role in the pathogenicity of MU, helping the understanding of its complex natural life cycle and encouraging further research using genomic approaches.
Collapse
Affiliation(s)
- Daniel Sanhueza
- MIVEGEC, IRD, CNRS, University Montpellier, 34394 Montpellier, France.
| | - Jean-François Guégan
- MIVEGEC, IRD, CNRS, University Montpellier, 34394 Montpellier, France.
- ASTRE, INRA, Cirad, University Montpellier, 34394 Montpellier, France.
| | - Heather Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | | |
Collapse
|