1
|
Du Y, Li G, Li X, Jian X, Wang X, Xie Y, Li Z, Zhang Z. Dietary Immunoglobulin Y by Targeting Both GbpB and GtfB Enhances the Anticaries Effect in Rats. Int Dent J 2024; 74:1298-1305. [PMID: 38797634 DOI: 10.1016/j.identj.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE The purpose of this work was to develop an anti-CAT-SYI immunoglobulin Y (IgY) antibody that targeted both GtfB (glucosyltransferase B) and GbpB (glucan-binding protein B) and test its anticaries properties in rats. METHODS A new CAT-SYI fusion gene was created utilising functional DNA fragments from the GtfB and GbpB genes. The recombinant antigens, comprising the fused CAT-SYI antigen, GtfB, and GbpB, were expressed and purified using a prokaryotic expression and purification system. The purified recombinant antigens were utilised to immunise laying hens against particular IgY production. The biological activities of these particular IgY antibodies were then assessed both in vitro and in vivo, including their capacity to suppress biofilm formation and tooth caries. RESULTS Results indicated that these produced IgY antibodies demonstrated a high antibody titer (>0.1 μg/mL) and could precisely recognise and bind to their respective antigens. Furthermore, it was discovered that these specific IgY antibodies successfully bind to Streptococcus mutans and significantly reduce biofilm development. After 8 weeks of ingesting antigen-specific IgY meals, comprising anti-GtfB IgY and anti-GbpB IgY, the severity of dental caries was dramatically reduced in S mutans-infected Sprague-Dawley rats (P < .01). Anti-CAT-SYI IgY therapy significantly reduced tooth cavities by 89.0% in vivo (P < .05) compared to other treatment groups. CONCLUSIONS The anti-CAT-SYI IgY, a multitarget antibody that targets both GtfB and GbpB, displayed excellent inhibitory effects against S mutans, making it a promising targeted method with improved anticaries efficacy and significant application opportunities.
Collapse
Affiliation(s)
- Yunxiao Du
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Guobin Li
- Department of Gastroenterology, FuShun People's Hospital, Zigong, China
| | - Xinglin Li
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xiaohong Jian
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xiaoling Wang
- Department of Gastroenterology, FuShun People's Hospital, Zigong, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Zaixin Li
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.
| | - Zhi Zhang
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.
| |
Collapse
|
2
|
Babikow E, Ghaltakhchyan N, Livingston T, Qu Y, Liu C, Hoxie A, Sulkowski T, Bocklage C, Marsh A, Phillips ST, Mitchell KB, Ribeiro ADA, Jackson TH, Roach J, Wu D, Divaris K, Jacox LA. Longitudinal Microbiome Changes in Supragingival Biofilm Transcriptomes Induced by Orthodontics. JDR Clin Trans Res 2024; 9:265-276. [PMID: 37876206 PMCID: PMC11184915 DOI: 10.1177/23800844231199393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION Common oral diseases are known to be associated with dysbiotic shifts in the supragingival microbiome, yet most oral microbiome associations with clinical end points emanate from cross-sectional studies. Orthodontic treatment is an elective procedure that can be exploited to prospectively examine clinically relevant longitudinal changes in the composition and function of the supragingival microbiome. METHODS A longitudinal cohort study was conducted among 24 adolescent orthodontic patients who underwent saliva and plaque sampling and clinical examinations at time points: before fixed appliance bonding and at 1, 6, and 12 wk thereafter. Clinical indices included bleeding on probing (BOP), mean gingival index (GI), probing depths (PDs), and plaque index (PI). To study the biologically (i.e., transcriptionally) active microbial communities, RNA was extracted from plaque and saliva for RNA sequencing and microbiome bioinformatics analysis. Longitudinal changes in microbiome beta diversity were examined using PERMANOVA tests, and the relative abundance of microbial taxa was measured using Kruskal-Wallis tests, Wilcoxon rank-sum tests, and negative binomial and zero-inflated mixed models. RESULTS Clinical measures of oral health deteriorated over time-the proportion of sites with GI and PI ≥1 increased by over 70% between prebonding and 12 wk postbonding while the proportion of sites with PD ≥4 mm increased 2.5-fold. Streptococcus sanguinis, a health-associated species that antagonizes cariogenic pathogens, showed a lasting decrease in relative abundance during orthodontic treatment. Contrarily, caries- and periodontal disease-associated taxa, including Selenomonas sputigena, Leptotrichia wadei, and Lachnoanaerobaculum saburreum, increased in abundance after bonding. Relative abundances of Stomatobaculum longum and Mogibacterium diversum in prebonding saliva predicted elevated BOP 12 wk postbonding, whereas Neisseria subflava was associated with lower BOP. CONCLUSIONS This study offers insights into longitudinal community and species-specific changes in the supragingival microbiome transcriptome during fixed orthodontic treatment, advancing our understanding of microbial dysbioses and identifying targets of future health-promoting clinical investigations. KNOWLEDGE TRANSFER STATEMENT Bonding braces was associated with subsequent changes in the oral microbiome characterized by increases in disease-associated species, decreases in health-associated species, and worsened clinical measures of oral health.
Collapse
Affiliation(s)
- E. Babikow
- Orthodontics Group, Division of Craniofacial and Surgical Care, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - N. Ghaltakhchyan
- Orthodontics Group, Division of Craniofacial and Surgical Care, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - T. Livingston
- Orthodontics Group, Division of Craniofacial and Surgical Care, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Selden Orthodontics, Huntersville, NC, USA
| | - Y. Qu
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - C. Liu
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - A. Hoxie
- Orthodontics Group, Division of Craniofacial and Surgical Care, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - T. Sulkowski
- Orthodontics Group, Division of Craniofacial and Surgical Care, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- University of Buffalo, School of Dental Medicine, Buffalo, NY, USA
| | - C. Bocklage
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - A. Marsh
- Microbiome Core Facility, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - S. T. Phillips
- GoHealth Clinical Research Unit, Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - K. B. Mitchell
- Orthodontics Group, Division of Craniofacial and Surgical Care, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - A. De A. Ribeiro
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - T. H. Jackson
- Orthodontics Group, Division of Craniofacial and Surgical Care, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Align Technology, Morrisville, NC, USA
| | - J. Roach
- Microbiome Core Facility, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - D. Wu
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - K. Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - L. A. Jacox
- Orthodontics Group, Division of Craniofacial and Surgical Care, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Peterseil M, Schönknecht K, Szybowicz M, Buchwald T, Chęcińska-Maciejewska Z, Krauss H. METHODS FOR DIAGNOSING DENTAL CARIES LESIONS. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:161-171. [PMID: 37254765 DOI: 10.36740/merkur202302110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tooth decay (dental caries) commonly occurs throughout the world and is one of the most widespread infectious diseases of lifestyle, globally affecting all age groups; up to 90% schoolchildren and almost 100% adults in both developing and developed countries. When left untreated, it can lead to disease outbreaks resulting in advere-health and life-threatening conditions such as endocarditis or sepsis. Undoubtedly, basic measures are thus required in both dental and GP practice to ensure that dental caries are detected early. This article presents the various diagnostic methods used to identify these disease outbreaks.
Collapse
Affiliation(s)
| | - Karina Schönknecht
- FACULTY OF EDUCATION, KAZIMIERA MILANOWSKA COLLEGE OF EDUCATION AND THERAPY IN POZNAN, POZNAN, POLAND; MEDICAL AFFAIRS DEPARTMENT, PHYTOPHARM KLĘKA SA, KLĘKA, POLAND
| | - Mirosław Szybowicz
- INSTITUTE OF MATERIALS RESEARCH AND QUANTUM ENGINEERING, POZNAN, UNIVERSITY OF TECHNOLOGY, POZNAN, POLAND
| | - Tomasz Buchwald
- INSTITUTE OF MATERIALS RESEARCH AND QUANTUM ENGINEERING, POZNAN, UNIVERSITY OF TECHNOLOGY, POZNAN, POLAND
| | | | - Hanna Krauss
- INSTITUTE OF PREVENTIVE RESEARCH, PRESIDENT S. WOJCIECHOWSKI MEMORIAL CALISIA UNIVERSITY, KALISZ, POLAND
| |
Collapse
|
4
|
Brito ACM, Bezerra IM, Borges MHDS, Cavalcanti YW, Almeida LDFDD. Effect of different salivary glucose concentrations on dual-species biofilms of Candida albicans and Streptococcus mutans. BIOFOULING 2021; 37:615-625. [PMID: 34233529 DOI: 10.1080/08927014.2021.1946519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Diabetes mellitus is one of the most prevalent diseases worldwide. The glucose levels found in the blood of diabetic patients can be reflected in the saliva, which can favor biofilm growth and predispose denture wearers to oral candidiasis. This study aimed to evaluate the effect of different salivary glucose concentrations on dual-species biofilms of Candida albicans and Streptococcus mutans. A 96-h biofilm was developed on acrylic resin specimens exposed to 'feast' (10% sucrose) and 'famine' periods. Biofilms were constantly exposed to salivary glucose concentrations equivalent to 0, 20, 60 and 100 mM. Higher salivary glucose concentrations resulted in increased counts of C. albicans and a higher quantity of insoluble extracellular polysaccharides. All biofilms presented high phospholipase activity. The biofilms were characterized by the predominance of yeast cells and microcolonies in all the groups analyzed with co-localization of both species. Higher salivary glucose concentrations formed more robust and potentially virulent biofilms.
Collapse
Affiliation(s)
| | - Isis Morais Bezerra
- Postgraduate Program in Dentistry, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Yuri Wanderley Cavalcanti
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | |
Collapse
|
5
|
Chen X, Daliri EBM, Chelliah R, Oh DH. Isolation and Identification of Potentially Pathogenic Microorganisms Associated with Dental Caries in Human Teeth Biofilms. Microorganisms 2020; 8:E1596. [PMID: 33081291 PMCID: PMC7603000 DOI: 10.3390/microorganisms8101596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Dental caries is attributed to the predominance of cariogenic microorganisms. Cariogenic microorganisms are pathological factors leading to acidification of the oral microenvironment, which is related to the initiation and progression of caries. The accepted cariogenic microorganism is Streptococcus mutans (S. mutans). However, studies have found that caries could occur in the absence of S. mutans. This study aimed to assess the presence of potentially cariogenic microorganisms in human teeth biofilm. The microorganisms were isolated from human mouth and freshly extracted human maxillary incisors extracted for reasons of caries. The isolates were sorted based on their acidogenic and aciduric properties, and the S. mutans was used as the reference strain. Four potentially cariogenic strains were selected. The selected strains were identified as Streptococcus salivarius (S. salivarius), Streptococcus anginosus (S. anginosus), Leuconostoc mesenteroides (L. mesenteroides), and Lactobacillus sakei (L. sakei) through morphological analysis followed by 16S rRNA gene sequence analysis. The cariogenicity of isolates was analyzed. We show, for the first time, an association between L. sakei (present in fermented food) and dental caries. The data provide useful information on the role of lactic acid bacteria from fermented foods and oral commensal streptococci in dental caries.
Collapse
Affiliation(s)
| | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (R.C.)
| |
Collapse
|
6
|
Staszczyk M, Jurczak A, Magacz M, Kościelniak D, Gregorczyk-Maga I, Jamka-Kasprzyk M, Kępisty M, Kołodziej I, Kukurba-Setkowicz M, Krzyściak W. Effect of Polyols and Selected Dental Materials on the Ability to Create a Cariogenic Biofilm-On Children Caries-Associated Streptococcus Mutans Isolates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103720. [PMID: 32466155 PMCID: PMC7277333 DOI: 10.3390/ijerph17103720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023]
Abstract
Secondary caries is a disease associated with the formation of biofilm on the border of the tooth and dental filling. Its development is strongly influenced by the dietary sweet foods and the type of dental material. The aim of the study was to assess the effect of sweeteners on the ability of clinical Streptococcus mutans strains to form biofilm on dental materials. Strains were isolated from plaque samples from 40 pediatric patients from the 3-6 ICADS II group. The ability to form biofilm was tested on composite and glass ionomer dental materials used for milk teeth filling in the presence of sucrose, xylitol, sorbitol, and erythritol. The bacterial film mass after 12, 24, 48, and 72 h and the number of bacterial colonies significantly decreased (p < 0.01) compared to the initial value for 5% erythritol and sorbitol on examined materials. A greater inhibitory effect was noted for glass ionomers compared to composites. Sucrose and xylitol supported biofilm formation, while erythritol had the best inhibitory effect. The use of fluoride-releasing glass ionomers exerted an effect synergistic to erythritol, i.e., inhibited plaque formation and the amount of cariogenic S. mutans. Selection of proper type of dental material together with replacing sucrose with polyols can significantly decrease risk of secondary caries development. Erithritol in combination with glass ionomer seems to be the most effective in secondary caries prevention.
Collapse
Affiliation(s)
- Małgorzata Staszczyk
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland; (M.S.); (A.J.); (D.K.); (I.G.-M.); (M.J.-K.); (M.K.); (I.K.); (M.K.-S.)
| | - Anna Jurczak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland; (M.S.); (A.J.); (D.K.); (I.G.-M.); (M.J.-K.); (M.K.); (I.K.); (M.K.-S.)
| | - Marcin Magacz
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
- Doctoral School of Health and Medical Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Dorota Kościelniak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland; (M.S.); (A.J.); (D.K.); (I.G.-M.); (M.J.-K.); (M.K.); (I.K.); (M.K.-S.)
| | - Iwona Gregorczyk-Maga
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland; (M.S.); (A.J.); (D.K.); (I.G.-M.); (M.J.-K.); (M.K.); (I.K.); (M.K.-S.)
| | - Małgorzata Jamka-Kasprzyk
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland; (M.S.); (A.J.); (D.K.); (I.G.-M.); (M.J.-K.); (M.K.); (I.K.); (M.K.-S.)
| | - Magdalena Kępisty
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland; (M.S.); (A.J.); (D.K.); (I.G.-M.); (M.J.-K.); (M.K.); (I.K.); (M.K.-S.)
| | - Iwona Kołodziej
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland; (M.S.); (A.J.); (D.K.); (I.G.-M.); (M.J.-K.); (M.K.); (I.K.); (M.K.-S.)
| | - Magdalena Kukurba-Setkowicz
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland; (M.S.); (A.J.); (D.K.); (I.G.-M.); (M.J.-K.); (M.K.); (I.K.); (M.K.-S.)
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-620-57-60
| |
Collapse
|
7
|
Zhang M, Zhang X, Tong L, Ou D, Wang Y, Zhang J, Wu Q, Ye Y. Random Mutagenesis Applied to Reveal Factors Involved in Oxidative Tolerance and Biofilm Formation in Foodborne Cronobacter malonaticus. Front Microbiol 2019; 10:877. [PMID: 31118922 PMCID: PMC6504702 DOI: 10.3389/fmicb.2019.00877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cronobacter species are linked with life-treating diseases in neonates and show strong tolerances to environmental stress. However, the information about factors involved in oxidative tolerance in Cronobacter remains elusive. Here, factors involved in oxidative tolerance in C. malonaticus were identified using a transposon mutagenesis. Eight mutants were successfully screened based on a comparison of the growth of strains from mutant library (n = 215) and wild type (WT) strain under 1.0 mM H2O2. Mutating sites including thioredoxin 2, glutaredoxin 3, pantothenate kinase, serine/threonine protein kinase, pyruvate kinase, phospholipase A, ferrous iron transport protein A, and alanine racemase 2 were successfully identified by arbitrary PCR and sequencing alignment. Furthermore, the comparison about quantity and structure of biofilms formation among eight mutants and WT was determined using crystal violet staining (CVS), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Results showed that the biofilms of eight mutants significantly decreased within 48 h compared to that of WT, suggesting that mutating genes play important roles in biofilm formation under oxidative stress. The findings provide valuable information for deeply understanding molecular mechanism about oxidative tolerance of C. malonaticus.
Collapse
Affiliation(s)
- Maofeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Liaowang Tong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yaping Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
8
|
Abrão F, Alves JA, Andrade G, de Oliveira PF, Ambrósio SR, Veneziani RCS, Tavares DC, Bastos JK, Martins CHG. Antibacterial Effect of Copaifera duckei Dwyer Oleoresin and Its Main Diterpenes against Oral Pathogens and Their Cytotoxic Effect. Front Microbiol 2018. [PMID: 29515530 PMCID: PMC5826368 DOI: 10.3389/fmicb.2018.00201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study evaluates the antibacterial activity of the Copaifera duckei Dwyer oleoresin and two isolated compounds [eperu-8(20)-15,18-dioic acid and polyalthic acid] against bacteria involved in primary endodontic infections and dental caries and assesses the cytotoxic effect of these substances against a normal cell line. MIC and MBC assays pointed out the most promising metabolites for further studies on bactericidal kinetics, antibiofilm activity, and synergistic antibacterial action. The oleoresin and polyalthic acid but not eperu-8(20)-15,18-dioic provided encouraging MIC and MBC results at concentrations lower than 100 μg mL−1. The oleoresin and polyalthic acid activities depended on the evaluated strain. A bactericidal effect on Lactobacillus casei (ATCC 11578 and clinical isolate) emerged before 8 h of incubation. For all the tested bacteria, the oleoresin and polyalthic acid inhibited biofilm formation by at least 50%. The oleoresin and polyalthic acid gave the best activity against Actinomyces naeslundii (ATCC 19039) and L. casei (ATCC 11578), respectively. The synergistic assays combining the oleoresin or polyalthic acid with chlorhexidine did not afford interesting results. We examined the cytotoxicity of C. duckei oleoresin, eperu-8(20)-15,18-dioic acid, and polyalthic acid against Chinese hamster lung fibroblasts. The oleoresin and polyalthic acid were cytotoxic at concentrations above 78.1 μg mL−1, whereas eperu-8(20)-15,18-dioic displayed cytotoxicity at concentrations above 312.5 μg mL−1. In conclusion, the oleoresin and polyalthic acid are potential sources of antibacterial agents against bacteria involved in primary endodontic infections and dental caries in both the sessile and the planktonic modes at concentrations that do not cause cytotoxicity.
Collapse
Affiliation(s)
- Fariza Abrão
- Research Laboratory of Applied Microbiology, University of Franca, São Paulo, Brazil
| | - Jessica A Alves
- Research Laboratory of Applied Microbiology, University of Franca, São Paulo, Brazil
| | - Gessica Andrade
- Research Laboratory of Applied Microbiology, University of Franca, São Paulo, Brazil
| | | | - Sérgio R Ambrósio
- Nucleus of Research in Sciences and Technology, University of Franca, São Paulo, Brazil
| | - Rodrigo C S Veneziani
- Nucleus of Research in Sciences and Technology, University of Franca, São Paulo, Brazil
| | - Denise C Tavares
- Laboratory of Mutagenesis, University of Franca, São Paulo, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Carlos H G Martins
- Research Laboratory of Applied Microbiology, University of Franca, São Paulo, Brazil
| |
Collapse
|