1
|
Furota S, Kaneko M, Tsujimura S, Takeshita D, Nakamichi Y, Igarashi K, Nobu MK, Yoshikawa M, Asahina K, Fukaya C, Ishitsuka T, Shimada K. Bidirectional electro-enzymatic reaction of coenzyme F 420 using benzyl viologen and F 420-dependent sulfite reductase. Bioelectrochemistry 2025; 164:108922. [PMID: 39892156 DOI: 10.1016/j.bioelechem.2025.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Coenzyme F420 is recognized as a crucial electron carrier in methane-generating metabolism but, beyond this, has garnered significant attention for its role in diverse microbial physiologies and relevance in industrial, medical, and environmental applications. However, one limitation of current application of F420 is the necessity of chemical electron donors for its reduction. In this study, an electrochemical reaction system was designed to facilitate electron transfer between the electrode and F420 using F420-dependent sulfite reductase (Fsr) as the catalyst and benzyl viologen (BV) as the redox mediator. Photometric analysis and cyclic potential scanning demonstrated that the occurrence of bidirectional (reversible) electrochemical oxidation and reduction of F420 in this system depended on the electrode potential. The formal redox potential of F420 in this system was -540 mV vs. Ag|AgCl|sat. KCl, which aligned with values previously determined using biochemical assays.
Collapse
Affiliation(s)
- Satoshi Furota
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan.
| | - Masanori Kaneko
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Seiya Tsujimura
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-5358, Japan
| | - Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yusuke Nakamichi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagami-yama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; Institute for Extra-cutting-edge Science and Technology Avant-grade Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Miho Yoshikawa
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kenta Asahina
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Chie Fukaya
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Toshie Ishitsuka
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kazuma Shimada
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-5358, Japan
| |
Collapse
|
2
|
Bekker OB, Galanova OO, Vatlin AA, Frolova SG, Shitikov EA, Bespiatykh DA, Klimina KM, Veselovsky VA, Ilyasov RA, Smirnova SV, Reznikova DA, Kochetkov NI, Maslov DA, Danilenko VN. A Quinoxaline 1,4-Dioxide Activates DNA Repair Systems in Mycobacterium smegmatis: A Transcriptomic Study. Int J Mol Sci 2025; 26:3689. [PMID: 40332345 DOI: 10.3390/ijms26083689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
In 2022, the World Health Organization reported that tuberculosis (TB) was the second leading cause of death globally from a single infectious agent following COVID-19. The development of new antitubercular agents with novel mechanisms of action for use in complex TB therapy is considered a key approach to combating TB. In this study, we examined the gene expression profile of M. smegmatis when exposed to a promising antituberculosis agent, quinoxaline 1,4-dioxide (QdNO) 7-chloro-2-(ethoxycarbonyl)-3-methyl-6-(piperazin-1-yl)quinoxaline-1,4-dioxide-1 (LCTA-3368). We investigated how the bacterial response changed with different minimum inhibitory concentrations (MIC) (1/4 × MIC, 1/2 × MIC, and 1 × MIC) and durations (30 min and 90 min) of treatment with the drug. Our analysis revealed significant upregulation in genes involved in DNA repair and replication processes, as well as changes in the expression of 95 genes encoding proteins with oxidoreductase activity. We additionally showed that the concentration of reactive oxygen species increases in a dose-dependent manner upon exposure of M. smegmatis to LCTA-3368. These findings support the proposed mechanism of antibacterial action of QdNOs, which is associated with the formation of free radicals leading to DNA damage.
Collapse
Affiliation(s)
- Olga B Bekker
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Olesya O Galanova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Aleksey A Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Ecology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Svetlana G Frolova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Egor A Shitikov
- Division of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Dmitry A Bespiatykh
- Division of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ksenia M Klimina
- Division of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Vladimir A Veselovsky
- Division of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Rustem A Ilyasov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Developmental Neurobiology Laboratory, Koltsov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Svetlana V Smirnova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Diana A Reznikova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Nikita I Kochetkov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 109004 Moscow, Russia
| | - Dmitry A Maslov
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Valery N Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
3
|
Aderemi AV, Snee M, Tunnicliffe RB, Golovanova M, Cain KM, Munro AW, Waltho JP, Leys D. Expression and purification of Mycobacterium tuberculosis F 420-dependent glucose-6-phosphate dehydrogenase enzyme using Escherichia coli. Protein Expr Purif 2025; 228:106650. [PMID: 39778697 DOI: 10.1016/j.pep.2024.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Since their discovery in Mycobacterium tuberculosis (Mtb), F420-dependent enzymes have been identified as both important drug targets and potential industrial biocatalysts, including for bioremediation of otherwise recalcitrant substrates. Mtb-FGD1, utilizes glucose 6-phosphate (G6P) as an electron donor for the reduction of F420. Current expression systems for Mtb-FGD1 use Mycobacterium smegmatis as host, because of the tendency for it to form inclusion bodies in E. coli. However, large scale recombinant protein production using M. smegmatis is slow and costly and the organism is not generally recognized as safe. Here, we report a faster, cheaper and safer approach for the expression of fully functional Mtb-FGD1 in E. coli using cold-adapted GroEL/ES as chaperones. Our approach yielded ∼70 mg of protein per litre (L) of culture. The purified enzyme catalysed the reduction of F420 to F420.H2 in the presence of G6P, and the re-oxidation of the F420.H2 to F420 when coupled to Tfu-FNO, which is a thermostable oxidoreductase that utilizes F420 for the reversible oxidation of NADPH. This latter finding provides opportunity for the utilization of Mtb-FGD1 as an industrial biocatalyst or in the detoxification of environmental contaminants such as malachite green, picrate and aflatoxin.
Collapse
Affiliation(s)
- Adewale Victor Aderemi
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom; Osun State University, Osogbo, Osun State, Nigeria
| | - Matthew Snee
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom
| | - Richard B Tunnicliffe
- Biomolecular Analysis Core Facility, Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Marina Golovanova
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom
| | - Kathleen M Cain
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom
| | - Andrew W Munro
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom.
| |
Collapse
|
4
|
Lenić A, Bardl B, Kloss F, Peschel G, Schlembach I, Lackner G, Regestein L, Rosenbaum MA. Pilot Scale Production of a F 420 Precursor Under Microaerobic Conditions. Biotechnol J 2025; 20:e70002. [PMID: 40100235 PMCID: PMC11917521 DOI: 10.1002/biot.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
The functional investigation of redox cofactors is important for many potential biocatalytic processes, yet limited access to these molecules is often hampering efficient research activities. Deazaflavin-dependent enzymes mediate a range of biochemical redox reactions in prokaryotes. Coenzyme F420-dependent enzymes are interesting for asymmetric redox biocatalysis and other challenging reactions, but low F420 titers harvested from natural producers and engineered host strains so far limit intensive investigation of these enzymes. FO is a natural precursor of F420, which already shares many of the redox properties and was previously confirmed as a surrogate for F420 in certain enzymes. Here, we focused our research on the development of an overall process workflow from a 30-L pilot scale stirred tank bioprocess to an optimized downstream purification process to obtain pure FO from an engineered Escherichia coli host strain. We were able to shift the cofactor synthesis from riboflavin to FO via the implementation of oxygen-limited process conditions during heterologous fbiC expression and reached a final titer of 5.05 mg L-1 FO in our fermentation broth, which for the first time allows the purification of relevant amounts for subsequent experiments. Online fluorescence measurement within the bioreactor system made it possible to monitor FO formation and confirmed growth-associated FO biosynthesis.
Collapse
Affiliation(s)
- Annika Lenić
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Bettina Bardl
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Florian Kloss
- Transfer Group Anti-infectives, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Gundela Peschel
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Ivan Schlembach
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Science: Food, Nutrition and Health, University Bayreuth, Bayreuth, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
5
|
Kang SW, Antoney J, Frkic RL, Lupton DW, Speight R, Scott C, Jackson CJ. Asymmetric Ene-Reduction of α,β-Unsaturated Compounds by F 420-Dependent Oxidoreductases A Enzymes from Mycobacterium smegmatis. Biochemistry 2023; 62:873-891. [PMID: 36637210 DOI: 10.1021/acs.biochem.2c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The stereoselective reduction of alkenes conjugated to electron-withdrawing groups by ene-reductases has been extensively applied to the commercial preparation of fine chemicals. Although several different enzyme families are known to possess ene-reductase activity, the old yellow enzyme (OYE) family has been the most thoroughly investigated. Recently, it was shown that a subset of ene-reductases belonging to the flavin/deazaflavin oxidoreductase (FDOR) superfamily exhibit enantioselectivity that is generally complementary to that seen in the OYE family. These enzymes belong to one of several FDOR subgroups that use the unusual deazaflavin cofactor F420. Here, we explore several enzymes of the FDOR-A subgroup, characterizing their substrate range and enantioselectivity with 20 different compounds, identifying enzymes (MSMEG_2027 and MSMEG_2850) that could reduce a wide range of compounds stereoselectively. For example, MSMEG_2027 catalyzed the complete conversion of both isomers of citral to (R)-citronellal with 99% ee, while MSMEG_2850 catalyzed complete conversion of ketoisophorone to (S)-levodione with 99% ee. Protein crystallography combined with computational docking has allowed the observed stereoselectivity to be mechanistically rationalized for two enzymes. These findings add further support for the FDOR and OYE families of ene-reductases displaying general stereocomplementarity to each other and highlight their potential value in asymmetric ene-reduction.
Collapse
Affiliation(s)
- Suk Woo Kang
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung25451, Republic of Korea
| | - James Antoney
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland4000, Australia
| | - Rebecca L Frkic
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Melbourne, Victoria3800, Australia
| | - Robert Speight
- School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland4000, Australia
| | - Colin Scott
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria3168, Australia.,CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, Australian Capital Territory2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| |
Collapse
|
6
|
Kang SW, Antoney J, Lupton DW, Speight R, Scott C, Jackson CJ. Asymmetric Ene-Reduction by F 420 -Dependent Oxidoreductases B (FDOR-B) from Mycobacterium smegmatis. Chembiochem 2023; 24:e202200797. [PMID: 36716144 DOI: 10.1002/cbic.202200797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Asymmetric reduction by ene-reductases has received considerable attention in recent decades. While several enzyme families possess ene-reductase activity, the Old Yellow Enzyme (OYE) family has received the most scientific and industrial attention. However, there is a limited substrate range and few stereocomplementary pairs of current ene-reductases, necessitating the development of a complementary class. Flavin/deazaflavin oxidoreductases (FDORs) that use the uncommon cofactor F420 have recently gained attention as ene-reductases for use in biocatalysis due to their stereocomplementarity with OYEs. Although the enzymes of the FDOR-As sub-group have been characterized in this context and reported to catalyse ene-reductions enantioselectively, enzymes from the similarly large, but more diverse, FDOR-B sub-group have not been investigated in this context. In this study, we investigated the activity of eight FDOR-B enzymes distributed across this sub-group, evaluating their specific activity, kinetic properties, and stereoselectivity against α,β-unsaturated compounds. The stereochemical outcomes of the FDOR-Bs are compared with enzymes of the FDOR-A sub-group and OYE family. Computational modelling and induced-fit docking are used to rationalize the observed catalytic behaviour and proposed a catalytic mechanism.
Collapse
Affiliation(s)
- Suk Woo Kang
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451 (Republic of, Korea
| | - James Antoney
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Robert Speight
- School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Colin Scott
- Environment, Commonwealth Scientific and Industrial Research Organization, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Diversification by CofC and Control by CofD Govern Biosynthesis and Evolution of Coenzyme F 420 and Its Derivative 3PG-F 420. mBio 2022; 13:e0350121. [PMID: 35038903 PMCID: PMC8764529 DOI: 10.1128/mbio.03501-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coenzyme F420 is a microbial redox cofactor that mediates diverse physiological functions and is increasingly used for biocatalytic applications. Recently, diversified biosynthetic routes to F420 and the discovery of a derivative, 3PG-F420, were reported. 3PG-F420 is formed via activation of 3-phospho-d-glycerate (3-PG) by CofC, but the structural basis of substrate binding, its evolution, as well as the role of CofD in substrate selection remained elusive. Here, we present a crystal structure of the 3-PG-activating CofC from Mycetohabitans sp. B3 and define amino acids governing substrate specificity. Site-directed mutagenesis enabled bidirectional switching of specificity and thereby revealed the short evolutionary trajectory to 3PG-F420 formation. Furthermore, CofC stabilized its product, thus confirming the structure of the unstable molecule and revealing its binding mode. The CofD enzyme was shown to significantly contribute to the selection of related intermediates to control the specificity of the combined biosynthetic CofC/D step. These results imply the need to change the design of combined CofC/D activity assays. Taken together, this work presents novel mechanistic and structural insights into 3PG-F420 biosynthesis and evolution and opens perspectives for the discovery and enhanced biotechnological production of coenzyme F420 derivatives in the future. IMPORTANCE The microbial cofactor F420 is crucial for processes like methanogenesis, antibiotics biosynthesis, drug resistance, and biocatalysis. Recently, a novel derivative of F420 (3PG-F420) was discovered, enabling the production and use of F420 in heterologous hosts. By analyzing the crystal structure of a CofC homolog whose substrate choice leads to formation of 3PG-F420, we defined amino acid residues governing the special substrate selectivity. A diagnostic residue enabled reprogramming of the substrate specificity, thus mimicking the evolution of the novel cofactor derivative. Furthermore, a labile reaction product of CofC was revealed that has not been directly detected so far. CofD was shown to provide another layer of specificity of the combined CofC/D reaction, thus controlling the initial substrate choice of CofC. The latter finding resolves a current debate in the literature about the starting point of F420 biosynthesis in various organisms.
Collapse
|
8
|
Mostafa A, Im S, Kim J, Lim KH, Kim I, Kim DH. Electron bifurcation reactions in dark fermentation: An overview for better understanding and improvement. BIORESOURCE TECHNOLOGY 2022; 344:126327. [PMID: 34785332 DOI: 10.1016/j.biortech.2021.126327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Electron bifurcation (EB) is the most recently found mode of energy conservation, which involves both exergonic and endergonic electron transfer reactions to minimize energy loss. Several works have been devoted on EB reactions (EBRs) in anaerobic digestion but limited in dark fermentative hydrogen production (DF). Two main electron carriers in DF are ferredoxin (Fd) and reduced nicotinamide adenine dinucleotide (NADH), complicatedly involved in EB. Here, i) the importance of EB involvement in DF, ii) all EBRs possible to present in DF, as well as iii) the limitation of previous studies that tried incorporating any of EBRs in DF metabolic model, were highlighted. In addition, the concept of using metagenomic analysis for estimating the share of each EB reaction in the metabolic model, was proposed. This review is expected to initiate a new wave for studying EB, as a tool for explaining and predicting DF products.
Collapse
Affiliation(s)
- Alsayed Mostafa
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seongwon Im
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jimin Kim
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Kyeong-Ho Lim
- Department of Civil and Environmental Engineering, Kongju National University, Cheonan, Chungnam 31080, Republic of Korea
| | - Ijung Kim
- Department of Civil and Environmental Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
| | - Dong-Hoon Kim
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
9
|
Grinter R, Greening C. Cofactor F420: an expanded view of its distribution, biosynthesis and roles in bacteria and archaea. FEMS Microbiol Rev 2021; 45:fuab021. [PMID: 33851978 PMCID: PMC8498797 DOI: 10.1093/femsre/fuab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Many bacteria and archaea produce the redox cofactor F420. F420 is structurally similar to the cofactors FAD and FMN but is catalytically more similar to NAD and NADP. These properties allow F420 to catalyze challenging redox reactions, including key steps in methanogenesis, antibiotic biosynthesis and xenobiotic biodegradation. In the last 5 years, there has been much progress in understanding its distribution, biosynthesis, role and applications. Whereas F420 was previously thought to be confined to Actinobacteria and Euryarchaeota, new evidence indicates it is synthesized across the bacterial and archaeal domains, as a result of extensive horizontal and vertical biosynthetic gene transfer. F420 was thought to be synthesized through one biosynthetic pathway; however, recent advances have revealed variants of this pathway and have resolved their key biosynthetic steps. In parallel, new F420-dependent biosynthetic and metabolic processes have been discovered. These advances have enabled the heterologous production of F420 and identified enantioselective F420H2-dependent reductases for biocatalysis. New research has also helped resolve how microorganisms use F420 to influence human and environmental health, providing opportunities for tuberculosis treatment and methane mitigation. A total of 50 years since its discovery, multiple paradigms associated with F420 have shifted, and new F420-dependent organisms and processes continue to be discovered.
Collapse
Affiliation(s)
- Rhys Grinter
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
10
|
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021; 2:958-989. [PMID: 34458820 PMCID: PMC8341948 DOI: 10.1039/d1cb00080b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure chiral compounds are presented, with a focus on the reactions developed within the past decade.
Collapse
Affiliation(s)
- Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- Field of Excellence BioHealth - University of Graz Austria
| |
Collapse
|
11
|
Potency boost of a Mycobacterium tuberculosis dihydrofolate reductase inhibitor by multienzyme F 420H 2-dependent reduction. Proc Natl Acad Sci U S A 2021; 118:2025172118. [PMID: 34161270 PMCID: PMC8237569 DOI: 10.1073/pnas.2025172118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial metabolism can cause intrinsic drug resistance but can also convert inactive parent drugs into bioactive derivatives, as is the case for several antimycobacterial prodrugs. Here, we show that the intrabacterial metabolism of a Mtb dihydrofolate reductase (DHFR) inhibitor with moderate affinity for its target boosts its on-target activity by two orders of magnitude. This is a “prodrug-like” antimycobacterial that possesses baseline activity in the absence of intracellular bioactivation. By elucidating the metabolic enhancement mechanism, we have provided the basis for the rational optimization of a class of DHFR inhibitors and uncovered an antibacterial drug discovery concept. Triaza-coumarin (TA-C) is a Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor with an IC50 (half maximal inhibitory concentration) of ∼1 µM against the enzyme. Despite this moderate target inhibition, TA-C shows exquisite antimycobacterial activity (MIC50, concentration inhibiting growth by 50% = 10 to 20 nM). Here, we investigated the mechanism underlying this potency disconnect. To confirm that TA-C targets DHFR and investigate its unusual potency pattern, we focused on resistance mechanisms. In Mtb, resistance to DHFR inhibitors is frequently associated with mutations in thymidylate synthase thyA, which sensitizes Mtb to DHFR inhibition, rather than in DHFR itself. We observed thyA mutations, consistent with TA-C interfering with the folate pathway. A second resistance mechanism involved biosynthesis of the redox coenzyme F420. Thus, we hypothesized that TA-C may be metabolized by Mtb F420–dependent oxidoreductases (FDORs). By chemically blocking the putative site of FDOR-mediated reduction in TA-C, we reproduced the F420-dependent resistance phenotype, suggesting that F420H2-dependent reduction is required for TA-C to exert its potent antibacterial activity. Indeed, chemically synthesized TA-C-Acid, the putative product of TA-C reduction, displayed a 100-fold lower IC50 against DHFR. Screening seven recombinant Mtb FDORs revealed that at least two of these enzymes reduce TA-C. This redundancy in activation explains why no mutations in the activating enzymes were identified in the resistance screen. Analysis of the reaction products confirmed that FDORs reduce TA-C at the predicted site, yielding TA-C-Acid. This work demonstrates that intrabacterial metabolism converts TA-C, a moderately active “prodrug,” into a 100-fold-more-potent DHFR inhibitor, thus explaining the disconnect between enzymatic and whole-cell activity.
Collapse
|
12
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
13
|
Genomes of the " Candidatus Actinomarinales" Order: Highly Streamlined Marine Epipelagic Actinobacteria. mSystems 2020; 5:5/6/e01041-20. [PMID: 33323418 PMCID: PMC7771536 DOI: 10.1128/msystems.01041-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microbiology is in a new age in which sequence databases are primary sources of information about many microbes. However, in-depth analysis of environmental genomes thus retrieved is essential to substantiate the new knowledge. “Candidatus Actinomarinales” was defined as a subclass of exclusively marine Actinobacteria with small cells and genomes. We have collected all the available genomes in databases to assess the diversity included in this group and analyzed it by comparative genomics. We have found the equivalent of five genera and 18 genomospecies. They have genome reduction parameters equal to those of freshwater actinobacterial “Candidatus Nanopelagicales” or marine alphaproteobacterial Pelagibacterales. Genome recruitment shows that they are found only in the photic zone and mainly in surface waters, with only one genus that is found preferentially at or below the deep chlorophyll maximum. “Ca. Actinomarinales” show a highly conserved core genome (80% of the gene families conserved for the whole order) with a saturation of genomic diversity of the flexible genome at the genomospecies level. We found only a flexible genomic island preserved throughout the order; it is related to the sugar decoration of the envelope and uses several tRNAs as hot spots to increase its genomic diversity. Populations had a discrete level of sequence diversity similar to other marine microbes but drastically different from the much higher levels found for Pelagibacterales. Genomic analysis suggests that they are all aerobic photoheterotrophs with one type 1 rhodopsin and a heliorhodopsin. Like other actinobacteria, they possess the F420 coenzyme biosynthesis pathway, and its lower reduction potential could provide access to an increased range of redox chemical transformations. Last, sequence analysis revealed the first “Ca. Actinomarinales” phages, including a prophage, with metaviromic islands related to sialic acid cleavage. IMPORTANCE Microbiology is in a new age in which sequence databases are primary sources of information about many microbes. However, in-depth analysis of environmental genomes thus retrieved is essential to substantiate the new knowledge. Here, we study 182 genomes belonging to the only known exclusively marine pelagic group of the phylum Actinobacteria. The aquatic branch of this phylum is largely known from environmental sequencing studies (single-amplified genomes [SAGs] and metagenome-assembled genomes [MAGs]), and we have collected and analyzed the available information present in databases about the “Ca. Actinomarinales.” They are among the most streamlined microbes to live in the epipelagic zone of the ocean, and their study is critical to obtain a proper view of the diversity of Actinobacteria and their role in aquatic ecosystems.
Collapse
|
14
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
15
|
Convergent pathways to biosynthesis of the versatile cofactor F 420. Curr Opin Struct Biol 2020; 65:9-16. [PMID: 32570108 DOI: 10.1016/j.sbi.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 10/24/2022]
Abstract
Cofactor F420 is historically known as the methanogenic redox cofactor, having a key role in the central metabolism of methanogens, and archaea in general. Over the past decade, however, it has become evident this cofactor is more widely distributed across archaeal and bacterial taxa, suggesting a broader role for F420 in various metabolic and ecological capacities. In this article, we focus on the recent findings that have led to a deeper understanding of F420 biosynthetic enzymes and metabolites across microorganisms.
Collapse
|
16
|
Redox Coenzyme F 420 Biosynthesis in Thermomicrobia Involves Reduction by Stand-Alone Nitroreductase Superfamily Enzymes. Appl Environ Microbiol 2020; 86:AEM.00457-20. [PMID: 32276981 DOI: 10.1128/aem.00457-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Coenzyme F420 is a redox cofactor involved in hydride transfer reactions in archaea and bacteria. Since F420-dependent enzymes are attracting increasing interest as tools in biocatalysis, F420 biosynthesis is being revisited. While it was commonly accepted for a long time that the 2-phospho-l-lactate (2-PL) moiety of F420 is formed from free 2-PL, it was recently shown that phosphoenolpyruvate is incorporated in Actinobacteria and that the C-terminal domain of the FbiB protein, a member of the nitroreductase (NTR) superfamily, converts dehydro-F420 into saturated F420 Outside the Actinobacteria, however, the situation is still unclear because FbiB is missing in these organisms and enzymes of the NTR family are highly diversified. Here, we show by heterologous expression and in vitro assays that stand-alone NTR enzymes from Thermomicrobia exhibit dehydro-F420 reductase activity. Metabolome analysis and proteomics studies confirmed the proposed biosynthetic pathway in Thermomicrobium roseum These results clarify the biosynthetic route of coenzyme F420 in a class of Gram-negative bacteria, redefine functional subgroups of the NTR superfamily, and offer an alternative for large-scale production of F420 in Escherichia coli in the future.IMPORTANCE Coenzyme F420 is a redox cofactor of Archaea and Actinobacteria, as well as some Gram-negative bacteria. Its involvement in processes such as the biosynthesis of antibiotics, the degradation of xenobiotics, and asymmetric enzymatic reductions renders F420 of great relevance for biotechnology. Recently, a new biosynthetic step during the formation of F420 in Actinobacteria was discovered, involving an enzyme domain belonging to the versatile nitroreductase (NTR) superfamily, while this process remained blurred in Gram-negative bacteria. Here, we show that a similar biosynthetic route exists in Thermomicrobia, although key biosynthetic enzymes show different domain architectures and are only distantly related. Our results shed light on the biosynthesis of F420 in Gram-negative bacteria and refine the knowledge about sequence-function relationships within the NTR superfamily of enzymes. Appreciably, these results offer an alternative route to produce F420 in Gram-negative model organisms and unveil yet another biochemical facet of this pathway to be explored by synthetic microbiologists.
Collapse
|
17
|
Grinter R, Ney B, Brammananth R, Barlow CK, Cordero PRF, Gillett DL, Izoré T, Cryle MJ, Harold LK, Cook GM, Taiaroa G, Williamson DA, Warden AC, Oakeshott JG, Taylor MC, Crellin PK, Jackson CJ, Schittenhelm RB, Coppel RL, Greening C. Cellular and Structural Basis of Synthesis of the Unique Intermediate Dehydro-F 420-0 in Mycobacteria. mSystems 2020; 5:e00389-20. [PMID: 32430409 PMCID: PMC7253369 DOI: 10.1128/msystems.00389-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022] Open
Abstract
F420 is a low-potential redox cofactor used by diverse bacteria and archaea. In mycobacteria, this cofactor has multiple roles, including adaptation to redox stress, cell wall biosynthesis, and activation of the clinical antitubercular prodrugs pretomanid and delamanid. A recent biochemical study proposed a revised biosynthesis pathway for F420 in mycobacteria; it was suggested that phosphoenolpyruvate served as a metabolic precursor for this pathway, rather than 2-phospholactate as long proposed, but these findings were subsequently challenged. In this work, we combined metabolomic, genetic, and structural analyses to resolve these discrepancies and determine the basis of F420 biosynthesis in mycobacterial cells. We show that, in whole cells of Mycobacterium smegmatis, phosphoenolpyruvate rather than 2-phospholactate stimulates F420 biosynthesis. Analysis of F420 biosynthesis intermediates present in M. smegmatis cells harboring genetic deletions at each step of the biosynthetic pathway confirmed that phosphoenolpyruvate is then used to produce the novel precursor compound dehydro-F420-0. To determine the structural basis of dehydro-F420-0 production, we solved high-resolution crystal structures of the enzyme responsible (FbiA) in apo-, substrate-, and product-bound forms. These data show the essential role of a single divalent cation in coordinating the catalytic precomplex of this enzyme and demonstrate that dehydro-F420-0 synthesis occurs through a direct substrate transfer mechanism. Together, these findings resolve the biosynthetic pathway of F420 in mycobacteria and have significant implications for understanding the emergence of antitubercular prodrug resistance.IMPORTANCE Mycobacteria are major environmental microorganisms and cause many significant diseases, including tuberculosis. Mycobacteria make an unusual vitamin-like compound, F420, and use it to both persist during stress and resist antibiotic treatment. Understanding how mycobacteria make F420 is important, as this process can be targeted to create new drugs to combat infections like tuberculosis. In this study, we show that mycobacteria make F420 in a way that is different from other bacteria. We studied the molecular machinery that mycobacteria use to make F420, determining the chemical mechanism for this process and identifying a novel chemical intermediate. These findings also have clinical relevance, given that two new prodrugs for tuberculosis treatment are activated by F420.
Collapse
Affiliation(s)
- Rhys Grinter
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Blair Ney
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- CSIRO Land & Water, Canberra, ACT, Australia
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Rajini Brammananth
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher K Barlow
- Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul R F Cordero
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David L Gillett
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Thierry Izoré
- Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Max J Cryle
- Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Liam K Harold
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - George Taiaroa
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | | | | | - Paul K Crellin
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
18
|
Cofactor F420-Dependent Enzymes: An Under-Explored Resource for Asymmetric Redox Biocatalysis. Catalysts 2019. [DOI: 10.3390/catal9100868] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The asymmetric reduction of enoates, imines and ketones are among the most important reactions in biocatalysis. These reactions are routinely conducted using enzymes that use nicotinamide cofactors as reductants. The deazaflavin cofactor F420 also has electrochemical properties that make it suitable as an alternative to nicotinamide cofactors for use in asymmetric reduction reactions. However, cofactor F420-dependent enzymes remain under-explored as a resource for biocatalysis. This review considers the cofactor F420-dependent enzyme families with the greatest potential for the discovery of new biocatalysts: the flavin/deazaflavin-dependent oxidoreductases (FDORs) and the luciferase-like hydride transferases (LLHTs). The characterized F420-dependent reductions that have the potential for adaptation for biocatalysis are discussed, and the enzymes best suited for use in the reduction of oxidized cofactor F420 to allow cofactor recycling in situ are considered. Further discussed are the recent advances in the production of cofactor F420 and its functional analog FO-5′-phosphate, which remains an impediment to the adoption of this family of enzymes for industrial biocatalytic processes. Finally, the prospects for the use of this cofactor and dependent enzymes as a resource for industrial biocatalysis are discussed.
Collapse
|
19
|
A revised biosynthetic pathway for the cofactor F 420 in prokaryotes. Nat Commun 2019; 10:1558. [PMID: 30952857 PMCID: PMC6450877 DOI: 10.1038/s41467-019-09534-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/13/2019] [Indexed: 01/19/2023] Open
Abstract
Cofactor F420 plays critical roles in primary and secondary metabolism in a range of bacteria and archaea as a low-potential hydride transfer agent. It mediates a variety of important redox transformations involved in bacterial persistence, antibiotic biosynthesis, pro-drug activation and methanogenesis. However, the biosynthetic pathway for F420 has not been fully elucidated: neither the enzyme that generates the putative intermediate 2-phospho-l-lactate, nor the function of the FMN-binding C-terminal domain of the γ-glutamyl ligase (FbiB) in bacteria are known. Here we present the structure of the guanylyltransferase FbiD and show that, along with its archaeal homolog CofC, it accepts phosphoenolpyruvate, rather than 2-phospho-l-lactate, as the substrate, leading to the formation of the previously uncharacterized intermediate dehydro-F420-0. The C-terminal domain of FbiB then utilizes FMNH2 to reduce dehydro-F420-0, which produces mature F420 species when combined with the γ-glutamyl ligase activity of the N-terminal domain. These new insights have allowed the heterologous production of F420 from a recombinant F420 biosynthetic pathway in Escherichia coli. Cofactor F420 plays crucial roles in bacterial and archaeal metabolism, but its biosynthetic pathway is not fully understood. Here, the authors present the structure of one of the enzymes and provide experimental evidence for a substantial revision of the pathway, including the identification of a new intermediate.
Collapse
|
20
|
Guarneri A, van Berkel WJ, Paul CE. Alternative coenzymes for biocatalysis. Curr Opin Biotechnol 2019; 60:63-71. [PMID: 30711813 DOI: 10.1016/j.copbio.2019.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Alice Guarneri
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Willem Jh van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
21
|
Mathew S, Trajkovic M, Kumar H, Nguyen QT, Fraaije MW. Enantio- and regioselective ene-reductions using F 420H 2-dependent enzymes. Chem Commun (Camb) 2018; 54:11208-11211. [PMID: 30230493 DOI: 10.1039/c8cc04449j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the past decade it has become clear that many microbes harbor enzymes that employ an unusual flavin cofactor, the F420 deazaflavin cofactor. Herein we show that F420-dependent reductases (FDRs) can successfully perform enantio-, regio- and chemoselective ene-reductions. For the first time, we have demonstrated that F420H2-driven reductases can be used as biocatalysts for the reduction of α,β-unsaturated ketones and aldehydes with good conversions (>99%) and excellent regioselectivities and enantiomeric excesses (>99% ee). Noteworthily, FDRs typically display an opposite enantioselectivity when compared to the well established FMN-dependent Old Yellow Enzymes (OYEs).
Collapse
Affiliation(s)
- Sam Mathew
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Coenzyme F 420-Dependent Glucose-6-Phosphate Dehydrogenase-Coupled Polyglutamylation of Coenzyme F 420 in Mycobacteria. J Bacteriol 2018; 200:JB.00375-18. [PMID: 30249701 DOI: 10.1128/jb.00375-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
Coenzyme F420 plays a key role in the redox metabolisms of various archaea and bacteria, including Mycobacterium tuberculosis In M. tuberculosis, F420-dependent reactions have been linked to several virulence factors. F420 carries multiple glutamate residues in the side chain, forming F420-n species (n, number of glutamate residues), and the length of this side chain impacts cellular physiology. M. tuberculosis strains with F420 species carrying shorter side chains exhibit resistance to delamanid and pretomanid, two new tuberculosis (TB) drugs. Thus, the process of polyglutamylation of F420 is of great interest. It has been known from genetic analysis that in mycobacteria an F420-0 γ-glutamyl ligase (FbiB) introduces up to seven glutamate residues into F420 However, purified FbiB of M. tuberculosis (MtbFbiB) is either inefficient or incapable of incorporating more than two glutamates. We found that, in vitro, MtbFbiB synthesized side chains containing up to seven glutamate residues if F420 was presented to the enzyme in a two-electron reduced state (F420H2). Our genetic analysis in Mycobacterium bovis BCG and Mycobacterium smegmatis and an analysis of literature data on M. tuberculosis revealed that in these mycobacteria the polyglutamylation process requires the assistance of F420-dependent glucose-6-phosphate dehydrogenase (Fgd) which reduces F420 to F420H2 We hypothesize that, starting with F420-0H2, the amino-terminal domain of FbiB builds F420-2H2, which is then transferred to the carboxy-terminal domain for further glutamylation; F420-2H2 modifies the carboxy-terminal domain structurally to accommodate longer glutamyl chains. This system is analogous to folylpolyglutamate synthase, which introduces more than one glutamate residue into folate only after this vitamin is reduced to tetrahydrofolate.IMPORTANCE Coenzyme F420-dependent reactions of Mycobacterium tuberculosis, which causes tuberculosis, potentially contributes to the virulence of this bacterium. The coenzyme carries a glutamic acid-derived tail, the length of which influences the metabolism of M. tuberculosis Mutations that eliminate the production of F420 with longer tails make M. tuberculosis resistant to two new tuberculosis drugs. This report describes that the synthesis of longer glutamyl tails of F420 requires concerted actions of two enzymes, one of which reduces the coenzyme prior to the action of the other, which catalyzes polyglutamylation. This knowledge will help to develop more effective tuberculosis (TB) drugs. Remarkably, the introduction of multiple glutamate residues into the sidechain of folate (vitamin B9) requires similar concerted actions, where one enzyme reduces the vitamin to tetrahydrofolate and the other catalyzes polyglutamylation; folate is required for DNA and amino acid synthesis. Thus, the reported research has also revealed a key similarity between two important cellular systems.
Collapse
|
23
|
Ichikawa H, Bashiri G, Kelly WL. Biosynthesis of the Thiopeptins and Identification of an F 420H 2-Dependent Dehydropiperidine Reductase. J Am Chem Soc 2018; 140:10749-10756. [PMID: 30118217 PMCID: PMC6193465 DOI: 10.1021/jacs.8b04238] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thiopeptins are highly decorated thiopeptide antibiotics similar in structure to thiostrepton A and harbor two unusual features. All thiopeptins contain a thioamide, a rare moiety among natural products, and a subset of thiopeptins present with a piperidine in the core macrocycle rather than the more oxidated dehydropiperidine or pyridine rings typically observed in the thiopeptides. Here, we report the identification of the thiopeptin biosynthetic gene ( tpn) cluster in Streptomyces tateyamensis and the gene product, TpnL, which shows sequence similarity to (deaza)flavin-dependent oxidoreductases. Heterologous expression of TpnL in the thiostrepton A producer Streptomyces laurentii led to the production of a piperidine-containing analogue. Binding studies revealed that TpnL preferentially binds the deazaflavin cofactor coenzyme F420, and in vitro reconstitution of TpnL activity confirmed that this enzyme is an F420H2-dependent dehydropiperidine reductase. The identification of TpnL and its activity establishes the basis for the piperidine-containing series a thiopeptides, one of the five main structural groups of this diverse family of antibiotics.
Collapse
Affiliation(s)
- Hiro Ichikawa
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ghader Bashiri
- Laboratory of Structural Biology and Maurice Wilkins Center for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Wendy L. Kelly
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Winkler CK, Faber K, Hall M. Biocatalytic reduction of activated CC-bonds and beyond: emerging trends. Curr Opin Chem Biol 2018; 43:97-105. [PMID: 29275291 DOI: 10.1016/j.cbpa.2017.12.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/02/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
Abstract
The biocatalytic reduction of activated CC-bonds is dominated by ene-reductases from the Old Yellow Enzyme family, which gained broad practical use owing to exquisite stereoselectivity combined with wide substrate scope. Protein diversity is fostered by mining distinct protein classes and by implementing protein engineering techniques. Recent efforts are focusing on expanding the chemical complexity of the product portfolio, either through substrate functionalization or design of multi-step reactions. This review also highlights unusual chemistries catalyzed by ene-reductases and presents emerging methodologies developed to bypass the need of natural nicotinamide cofactors.
Collapse
Affiliation(s)
| | - Kurt Faber
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Mélanie Hall
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.
| |
Collapse
|
25
|
Ney B, Carere CR, Sparling R, Jirapanjawat T, Stott MB, Jackson CJ, Oakeshott JG, Warden AC, Greening C. Cofactor Tail Length Modulates Catalysis of Bacterial F 420-Dependent Oxidoreductases. Front Microbiol 2017; 8:1902. [PMID: 29021791 PMCID: PMC5623714 DOI: 10.3389/fmicb.2017.01902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
F420 is a microbial cofactor that mediates a wide range of physiologically important and industrially relevant redox reactions, including in methanogenesis and tetracycline biosynthesis. This deazaflavin comprises a redox-active isoalloxazine headgroup conjugated to a lactyloligoglutamyl tail. Here we studied the catalytic significance of the oligoglutamate chain, which differs in length between bacteria and archaea. We purified short-chain F420 (two glutamates) from a methanogen isolate and long-chain F420 (five to eight glutamates) from a recombinant mycobacterium, confirming their different chain lengths by HPLC and LC/MS analysis. F420 purified from both sources was catalytically compatible with purified enzymes from the three major bacterial families of F420-dependent oxidoreductases. However, long-chain F420 bound to these enzymes with a six- to ten-fold higher affinity than short-chain F420. The cofactor side chain also significantly modulated the kinetics of the enzymes, with long-chain F420 increasing the substrate affinity (lower Km) but reducing the turnover rate (lower kcat) of the enzymes. Molecular dynamics simulations and comparative structural analysis suggest that the oligoglutamate chain of F420 makes dynamic electrostatic interactions with conserved surface residues of the oxidoreductases while the headgroup binds the catalytic site. In conjunction with the kinetic data, this suggests that electrostatic interactions made by the oligoglutamate tail result in higher-affinity, lower-turnover catalysis. Physiologically, we propose that bacteria have selected for long-chain F420 to better control cellular redox reactions despite tradeoffs in catalytic rate. Conversely, this suggests that industrial use of shorter-length F420 will greatly increase the rates of bioremediation and biocatalysis processes relying on purified F420-dependent oxidoreductases.
Collapse
Affiliation(s)
- Blair Ney
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Carlo R Carere
- GNS Science, Wairakei Research Centre, Lower Hutt, New Zealand
| | - Richard Sparling
- GNS Science, Wairakei Research Centre, Lower Hutt, New Zealand.,Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Matthew B Stott
- GNS Science, Wairakei Research Centre, Lower Hutt, New Zealand
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - John G Oakeshott
- Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Andrew C Warden
- Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,Land and Water Flagship, The Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| |
Collapse
|