1
|
Ito K, Kuramata M, Tanikawa H, Suda A, Yamaguchi N, Ishikawa S. Diversity and transcription of genes involved in respiratory As(V) reduction and As(III) methylation in Japanese paddy soils. BMC Microbiol 2024; 24:396. [PMID: 39379826 PMCID: PMC11462812 DOI: 10.1186/s12866-024-03562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Arsenic (As) metabolism by soil microorganisms has an impact on As geochemical cycling in paddy soils, which in turn affects As uptake in rice. However, little is known about the key microorganisms involved in this process in Japanese paddy soil. RESULTS Total RNA was extracted from Japanese paddy soils with different levels of dissolved As under flooded conditions, and the transcription of As metabolic genes (arrA, ttrA and arsM) was analyzed via a metatranscriptomic approach. The results showed that ttrA was the predominant respiratory arsenate reductase gene transcribed in these soils rather than arrA, suggesting that ttrA contributes to the reductive dissolution of As. The predominant taxa expressing ttrA differed among soils but were mostly associated with genera known for their iron- and/or sulfate-reduction activity. In addition, a wide variety of microorganisms expressed and upregulated arsM approximately 5.0- to 13.2-fold at 9 d compared with 3 d of incubation under flooded conditions in flasks. CONCLUSIONS Our results support the involvement of microbial activity in the geochemical cycling of As in Japanese paddy soils and suggest that ttrA may be one of the key genes involved in the formation of arsenite, an inorganic species taken up by rice.
Collapse
Affiliation(s)
- Koji Ito
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Masato Kuramata
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hachidai Tanikawa
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Aomi Suda
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Noriko Yamaguchi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Satoru Ishikawa
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
| |
Collapse
|
2
|
Zavarzina DG, Merkel AY, Klyukina AA, Elizarov IM, Pikhtereva VA, Rusakov VS, Chistyakova NI, Ziganshin RH, Maslov AA, Gavrilov SN. Iron or sulfur respiration-an adaptive choice determining the fitness of a natronophilic bacterium Dethiobacter alkaliphilus in geochemically contrasting environments. Front Microbiol 2023; 14:1108245. [PMID: 37520367 PMCID: PMC10376724 DOI: 10.3389/fmicb.2023.1108245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Haloalkaliphilic microorganisms are double extremophiles functioning optimally at high salinity and pH. Their typical habitats are soda lakes, geologically ancient yet widespread ecosystems supposed to harbor relict microbial communities. We compared metabolic features and their determinants in two strains of the natronophilic species Dethiobacter alkaliphilus, the only cultured representative of the class "Dethiobacteria" (Bacillota). The strains of D. alkaliphilus were previously isolated from geographically remote Mongolian and Kenyan soda lakes. The type strain AHT1T was described as a facultative chemolithoautotrophic sulfidogen reducing or disproportionating sulfur or thiosulfate, while strain Z-1002 was isolated as a chemolithoautotrophic iron reducer. Here, we uncovered the iron reducing ability of strain AHT1T and the ability of strain Z-1002 for thiosulfate reduction and anaerobic Fe(II) oxidation. Key catabolic processes sustaining the growth of both D. alkaliphilus strains appeared to fit the geochemical settings of two contrasting natural alkaline environments, sulfur-enriched soda lakes and iron-enriched serpentinites. This hypothesis was supported by a meta-analysis of Dethiobacterial genomes and by the enrichment of a novel phylotype from a subsurface alkaline aquifer under Fe(III)-reducing conditions. Genome analysis revealed multiheme c-type cytochromes to be the most probable determinants of iron and sulfur redox transformations in D. alkaliphilus. Phylogeny reconstruction showed that all the respiratory processes in this organism are likely provided by evolutionarily related early forms of unconventional octaheme tetrathionate and sulfite reductases and their structural analogs, OmhA/OcwA Fe(III)-reductases. Several phylogenetically related determinants of anaerobic Fe(II) oxidation were identified in the Z-1002 genome, and the oxidation process was experimentally demonstrated. Proteomic profiling revealed two distinct sets of multiheme cytochromes upregulated in iron(III)- or thiosulfate-respiring cells and the cytochromes peculiar for Fe(II) oxidizing cells. We suggest that maintaining high variation in multiheme cytochromes is an effective adaptive strategy to occupy geochemically contrasting alkaline environments. We propose that sulfur-enriched soda lakes could be secondary habitats for D. alkaliphilus compared to Fe-rich serpentinites, and that the ongoing evolution of Dethiobacterales could retrace the evolutionary path that may have occurred in prokaryotes at a turning point in the biosphere's history, when the intensification of the sulfur cycle outweighed the global significance of the iron cycle.
Collapse
Affiliation(s)
- Daria G. Zavarzina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Yu Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan M. Elizarov
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria A. Pikhtereva
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Maslov
- Faculty of Geology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey N. Gavrilov
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Mijnendonckx K, Bleyen N, Van Gompel A, Coninx I, Leys N. pH and microbial community determine the denitrifying activity in the presence of nitrate-containing radioactive waste. Front Microbiol 2022; 13:968220. [PMID: 36338040 PMCID: PMC9634998 DOI: 10.3389/fmicb.2022.968220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
An important fraction of the currently stored volume of long-lived intermediate-level radioactive waste in Belgium contains large amounts of NaNO3 homogeneously dispersed in a hard bituminous matrix. Geological disposal of this waste form in a water-saturated sedimentary formation such as Boom Clay will result in the leaching of high concentrations of NaNO3, which could cause a geochemical perturbation of the surrounding clay, possibly affecting some of the favorable characteristics of the host formation. In addition, hyper-alkaline conditions are expected for thousands of years, imposed by the cementitious materials used as backfill material. Microbial nitrate reduction is a well-known process and can result in the accumulation of nitrite or nitrogenous gases. This could lead to the oxidation of redox-active Boom Clay components, which could (locally) decrease the reducing capacity of the clay formation. Here, we compared nitrate reduction processes between two microbial communities at different pH related to a geological repository environment and in the presence of a nitrate-containing waste simulate during 1 year in batch experiments. We showed that the microbial community from in Boom Clay borehole water was able to carry out nitrate reduction in the presence of acetate at pH 10.5, although the maximum rate of 1.3 ± 0.2 mM NO3 -/day was much lower compared to that observed at pH 9 (2.9 mM NO3 -/day). However, microbial activity at pH 10.5 was likely limited by a phosphate shortage. This study further confirmed that the Harpur Hill sediment harbors a microbial community adapted to high pH conditions. It reduced twice as much nitrate at pH 10.5 compared to pH 9 and the maximum nitrate reduction rate was higher at pH 10.5 compared to that at pH 9, i.e., 3.4 ± 0.8 mM NO3 -/day versus 2.2 ± 0.4 mM NO3 -/day. Both communities were able to form biofilms on non-radioactive Eurobitum. However, for both microbial communities, pH 12.5 seems to be a limiting condition for microbial activity as no nitrate reduction nor biofilm was observed. Nevertheless, pH alone is not sufficient to eliminate microbial presence, but it can induce a significant shift in the microbial community composition and reduce its nitrate reducing activity. Furthermore, at the interface between the cementitious disposal gallery and the clay host rock, the pH will not be sufficiently high to inhibit microbial nitrate reduction.
Collapse
Affiliation(s)
- Kristel Mijnendonckx
- Unit of Microbiology, SCK CEN, Mol, Belgium,*Correspondence: Kristel Mijnendonckx,
| | | | | | | | | |
Collapse
|
4
|
Sodium Energetic Cycle in the Natronophilic Bacterium Thioalkalivibrio versutus. Int J Mol Sci 2022; 23:ijms23041965. [PMID: 35216079 PMCID: PMC8874543 DOI: 10.3390/ijms23041965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
As inhabitants of soda lakes, Thioalkalivibrio versutus are halo- and alkaliphilic bacteria that have previously been shown to respire with the first demonstrated Na+-translocating cytochrome-c oxidase (CO). The enzyme generates a sodium-motive force (Δs) as high as −270 mV across the bacterial plasma membrane. However, in these bacteria, operation of the possible Δs consumers has not been proven. We obtained motile cells and used them to study the supposed Na+ energetic cycle in these bacteria. The resulting motility was activated in the presence of the protonophore 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), in line with the same effect on cell respiration, and was fully blocked by amiloride—an inhibitor of Na+-motive flagella. In immotile starving bacteria, ascorbate triggered CO-mediated respiration and motility, both showing the same dependence on sodium concentration. We concluded that, in T. versutus, Na+-translocating CO and Na+-motive flagella operate in the Na+ energetic cycle mode. Our research may shed light on the energetic reason for how these bacteria are confined to a narrow chemocline zone and thrive in the extreme conditions of soda lakes.
Collapse
|
5
|
Esquivel-Hernández DA, García-Pérez JS, Xu X, Metha S, Maldonado J, Xia S, Zhao HP, Rittmann BE, Ontiveros-Valencia A. Microbial ecology in selenate-reducing biofilm communities: Rare biosphere and their interactions with abundant phylotypes. Biotechnol Bioeng 2021; 118:2460-2471. [PMID: 33719058 DOI: 10.1002/bit.27754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022]
Abstract
Selenate (SeO4 2- ) reduction in hydrogen (H2 )-fed membrane biofilm reactors (H2 -MBfRs) was studied in combinations with other common electron acceptors. We employed H2 -MBfRs with two distinctly different conditions: R1, with ample electron-donor availability and acceptors SeO4 2- and sulfate (SO4 2- ), and R2, with electron-donor limitation and the presence of electron acceptors SeO4 2- , nitrate (NO3 - ), and SO4 2- . Even though H2 was available to reduce all input SeO4 2- and SO4 2- in R1, SeO4 2- reduction was preferred over SO4 2- reduction. In R2, co-reduction of NO3 - and SeO4 2- occurred, and SO4 2- reduction was mostly suppressed. Biofilms in all MBfRs had high microbial diversity that was influenced by the "rare biosphere" (RB), phylotypes with relative abundance less than 1%. While all MBfR biofilms had abundant members, such as Dechloromonas and Methyloversatilis, the bacterial communities were significantly different between R1 and R2. For R1, abundant genera were Methyloversatilis, Melioribacter, and Propionivibrio; for R2, abundant genera were Dechloromonas, Hydrogenophaga, Cystobacter, Methyloversatilis, and Thauera. Although changes in electron-acceptor or -donor loading altered the phylogenetic structure of the microbial communities, the biofilm communities were resilient in terms of SeO4 2- and NO3 - reductions, because interacting members of the RB had the capacity of respiring these electron acceptors.
Collapse
Affiliation(s)
- Diego A Esquivel-Hernández
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jonathan S García-Pérez
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Xiaoyin Xu
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Sanya Metha
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Juan Maldonado
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Siqing Xia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Bruce E Rittmann
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Aura Ontiveros-Valencia
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
6
|
Gavrilov SN, Zavarzina DG, Elizarov IM, Tikhonova TV, Dergousova NI, Popov VO, Lloyd JR, Knight D, El-Naggar MY, Pirbadian S, Leung KM, Robb FT, Zakhartsev MV, Bretschger O, Bonch-Osmolovskaya EA. Novel Extracellular Electron Transfer Channels in a Gram-Positive Thermophilic Bacterium. Front Microbiol 2021; 11:597818. [PMID: 33505370 PMCID: PMC7829351 DOI: 10.3389/fmicb.2020.597818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
Biogenic transformation of Fe minerals, associated with extracellular electron transfer (EET), allows microorganisms to exploit high-potential refractory electron acceptors for energy generation. EET-capable thermophiles are dominated by hyperthermophilic archaea and Gram-positive bacteria. Information on their EET pathways is sparse. Here, we describe EET channels in the thermophilic Gram-positive bacterium Carboxydothermus ferrireducens that drive exoelectrogenesis and rapid conversion of amorphous mineral ferrihydrite to large magnetite crystals. Microscopic studies indicated biocontrolled formation of unusual formicary-like ultrastructure of the magnetite crystals and revealed active colonization of anodes in bioelectrochemical systems (BESs) by C. ferrireducens. The internal structure of micron-scale biogenic magnetite crystals is reported for the first time. Genome analysis and expression profiling revealed three constitutive c-type multiheme cytochromes involved in electron exchange with ferrihydrite or an anode, sharing insignificant homology with previously described EET-related cytochromes thus representing novel determinants of EET. Our studies identify these cytochromes as extracellular and reveal potentially novel mechanisms of cell-to-mineral interactions in thermal environments.
Collapse
Affiliation(s)
- Sergey N Gavrilov
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Daria G Zavarzina
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Ivan M Elizarov
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Tamara V Tikhonova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia I Dergousova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Kurchatov Complex NBICS-Technologies, National Research Center "Kurchatov Institute," Moscow, Russia
| | - Jonathan R Lloyd
- Dalton Nuclear Institute, FSE Research Institutes, The University of Manchester, Manchester, United Kingdom
| | - David Knight
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Sahand Pirbadian
- University of Southern California, Los Angeles, CA, United States
| | - Kar Man Leung
- University of Southern California, Los Angeles, CA, United States
| | - Frank T Robb
- School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | | | | | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
Possible Involvement of a Tetrathionate Reductase Homolog in Dissimilatory Arsenate Reduction by Anaeromyxobacter sp. Strain PSR-1. Appl Environ Microbiol 2020; 86:AEM.00829-20. [PMID: 32978134 DOI: 10.1128/aem.00829-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022] Open
Abstract
Anaeromyxobacter sp. strain PSR-1, a dissimilatory arsenate [As(V)]-reducing bacterium, can utilize As(V) as a terminal electron acceptor for anaerobic respiration. A previous draft genome analysis revealed that strain PSR-1 lacks typical respiratory As(V) reductase genes (arrAB), which suggested the involvement of another protein in As(V) respiration. Dissimilatory As(V) reductase activity of strain PSR-1 was induced under As(V)-respiring conditions and was localized predominantly in the periplasmic fraction. The activity was visualized by partially denaturing gel electrophoresis, and liquid chromatography-tandem mass spectrometry analysis identified proteins involved in the active band. Among these proteins, a protein annotated as molybdopterin-dependent oxidoreductase (PSR1_00330) exhibited the highest sequence coverage, 76%. Phylogenetic analysis revealed that this protein was a homolog of tetrathionate reductase catalytic subunit TtrA. However, the crude extract of strain PSR-1 did not show significant tetrathionate reductase enzyme activity. Comparative proteomic analysis revealed that the protein PSR1_00330 and a homolog of tetrathionate reductase electron transfer subunit TtrB (PSR1_00329) were expressed abundantly and specifically under As(V)-respiring conditions, respectively. The genes encoding PSR1_00330 and PSR1_00329 formed an operon-like structure along with a gene encoding a c-type cytochrome (cyt c), and their transcription was upregulated under As(V)-respiring conditions. These results suggest that the protein PSR1_00330, which lacks tetrathionate reductase activity, functions as a dissimilatory As(V) reductase in strain PSR-1. Considering the wide distribution of TtrA homologs among bacteria and archaea, they may play a hitherto unknown role along with conventional respiratory As(V) reductase (Arr) in the biogeochemical cycling of arsenic in nature.IMPORTANCE Dissimilatory As(V)-reducing prokaryotes play significant roles in arsenic release and contamination in groundwater and threaten the health of people worldwide. Generally, such prokaryotes reduce As(V) by means of a respiratory As(V) reductase designated Arr. However, some dissimilatory As(V)-reducing prokaryotes such as Anaeromyxobacter sp. strain PSR-1 lack genes encoding Arr, suggesting the involvement of other protein in As(V) reduction. In this study, using multiple proteomic and transcriptional analyses, it was found that the dissimilatory As(V) reductase of strain PSR-1 was a protein closely related to the tetrathionate reductase catalytic subunit (TtrA). Tetrathionate reductase is known to play a role in anaerobic respiration of Salmonella on tetrathionate, but strain PSR-1 showed neither growth on tetrathionate nor significant tetrathionate reductase enzyme activity. These results suggest the possibility that TtrA homologs encoded in a wide variety of archaeal and bacterial genomes might function as dissimilatory As(V) reductases.
Collapse
|
8
|
Gavrilov SN, Korzhenkov AA, Kublanov IV, Bargiela R, Zamana LV, Popova AA, Toshchakov SV, Golyshin PN, Golyshina OV. Microbial Communities of Polymetallic Deposits' Acidic Ecosystems of Continental Climatic Zone With High Temperature Contrasts. Front Microbiol 2019; 10:1573. [PMID: 31379766 PMCID: PMC6650587 DOI: 10.3389/fmicb.2019.01573] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022] Open
Abstract
Acid mine drainage (AMD) systems are globally widespread and are an important source of metal pollution in riverine and coastal systems. Microbial AMD communities have been extensively studied for their ability to thrive under extremely acidic conditions and for their immense contribution to the dissolution of metal ores. However, little is known on microbial inhabitants of AMD systems subjected to extremely contrasting continental seasonal temperature patterns as opposed to maritime climate zones, experiencing much weaker annual temperature variations. Here, we investigated three types of AMD sites in Eastern Transbaikalia (Russia). In this region, all surface water bodies undergo a deep and long (up to 6 months) freezing, with seasonal temperatures varying between -33 and +24°C, which starkly contrasts the common well-studied AMD environments. We sampled acidic pit lake (Sherlovaya Gora site) located in the area of a polymetallic deposit, acidic drainage water from Bugdaya gold-molybdenum-tungsten deposit and Ulan-Bulak natural acidic spring. These systems showed the abundance of bacteria-derived reads mostly affiliated with Actinobacteria, Acidobacteria, Alpha- and Gammaproteobacteria, chloroplasts, Chloroflexi, Bacteroidetes, and Firmicutes. Furthermore, candidate taxa "Ca. Saccharibacteria" (previously known as TM7), "Ca. Parcubacteria" (OD1) and WPS-2 were represented in substantial quantities (10-20%). Heterotrophy and iron redox cycling can be considered as central processes of carbon and energy flow for majority of detected bacterial taxa. Archaea were detected in low numbers, with Terrestrial Miscellaneous Euryarchaeal Group (TMEG), to be most abundant (3%) in acidic spring Ulan-Bulak. Composition of these communities was found to be typical in comparison to other AMD sites; however, certain groups (as Ignavibacteriae) could be specifically associated with this area. This study provides insight into the microbial diversity patterns in acidic ecosystems formed in areas of polymetallic deposits in extreme continental climate zone with contrasting temperature parameters.
Collapse
Affiliation(s)
- Sergey N. Gavrilov
- Laboratory of Metabolism of Extremophiles, Winogradsky Institute of Microbiology, FRC Biotechnology, RAS, Moscow, Russia
| | - Aleksei A. Korzhenkov
- Laboratory of Bioinformatics, Genomics and Genome Editing, NRC Kurchatov Institute, Moscow, Russia
| | - Ilya V. Kublanov
- Laboratory of Metabolism of Extremophiles, Winogradsky Institute of Microbiology, FRC Biotechnology, RAS, Moscow, Russia
| | - Rafael Bargiela
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Leonid V. Zamana
- Laboratory of Geoecology and Hydrogeochemistry, Institute of Natural Resources, Ecology and Cryology, SB RAS, Chita, Russia
| | - Alexandra A. Popova
- Laboratory of Metabolism of Extremophiles, Winogradsky Institute of Microbiology, FRC Biotechnology, RAS, Moscow, Russia
| | - Stepan V. Toshchakov
- Laboratory of Metabolism of Extremophiles, Winogradsky Institute of Microbiology, FRC Biotechnology, RAS, Moscow, Russia
| | - Peter N. Golyshin
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| | - Olga V. Golyshina
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
- Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| |
Collapse
|
9
|
Expression of Genes and Proteins Involved in Arsenic Respiration and Resistance in Dissimilatory Arsenate-Reducing Geobacter sp. Strain OR-1. Appl Environ Microbiol 2019; 85:AEM.00763-19. [PMID: 31101608 DOI: 10.1128/aem.00763-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
The reduction of arsenate [As(V)] to arsenite [As(III)] by dissimilatory As(V)-reducing bacteria, such as Geobacter spp., may play a significant role in arsenic release from anaerobic sediments into groundwater. The biochemical and molecular mechanisms by which these bacteria cope with this toxic element remain unclear. In this study, the expression of several genes involved in arsenic respiration (arr) and resistance (ars) was determined using Geobacter sp. strain OR-1, the only cultured Geobacter strain capable of As(V) respiration. In addition, proteins expressed differentially under As(V)-respiring conditions were identified by semiquantitative proteomic analysis. Dissimilatory As(V) reductase (Arr) of strain OR-1 was localized predominantly in the periplasmic space, and the transcription of its gene (arrA) was upregulated under As(V)-respiring conditions. The transcription of the detoxifying As(V) reductase gene (arsC) was also upregulated, but its induction required 500 times higher concentration of As(III) (500 μM) than did the arrA gene. Comparative proteomic analysis revealed that in addition to the Arr and Ars proteins, proteins involved in the following processes were upregulated under As(V)-respiring conditions: (i) protein folding and assembly for rescue of proteins with oxidative damage, (ii) DNA replication and repair for restoration of DNA breaks, (iii) anaplerosis and gluconeogenesis for sustainable energy production and biomass formation, and (iv) protein and nucleotide synthesis for the replacement of damaged proteins and nucleotides. These results suggest that strain OR-1 copes with arsenic stress by orchestrating pleiotropic processes that enable this bacterium to resist and actively metabolize arsenic.IMPORTANCE Dissimilatory As(V)-reducing bacteria, such as Geobacter spp., play significant roles in arsenic release and contamination in groundwater and threaten the health of people worldwide. However, the biochemical and molecular mechanisms by which these bacteria cope with arsenic toxicity remain unclear. In this study, it was found that both respiratory and detoxifying As(V) reductases of a dissimilatory As(V)-reducing bacterium, Geobacter sp. strain OR-1, were upregulated under As(V)-respiring conditions. In addition, various proteins expressed specifically or more abundantly in strain OR-1 under arsenic stress were identified. Strain OR-1 actively metabolizes arsenic while orchestrating various metabolic processes that repair oxidative damage caused by arsenic. Such information is useful in assessing and identifying possible countermeasures for the prevention of microbial arsenic release in nature.
Collapse
|
10
|
Bonch-Osmolovskaya E, Elcheninov A, Zayulina K, Kublanov I. New thermophilic prokaryotes with hydrolytic activities. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Thermophilic microorganisms are capable of growing on polymeric substrates and have been intensively studied for their enzymes, thermostable hydrolases (glycosidases, proteinases, lipases), which have important applications in many fields of bioindustry: production of detergents, food processing, paper and textile industry, biofuel formation from organic wastes, etc.1. The advantages of thermostable enzymes application are in their higher stability not only against temperature, but also against high or low pH, presence of detergents, etc. High temperature increases solubility of substrates2, thus making them more available, and significantly decreases the contamination risks. Many highly stable hydrolases, produced by thermophilic bacteria and archaea have been discovered3–6; however, due to continuous industrial demand and our knowledge that natural environments are a significant reservoir of genetic and hence functional diversity7, new thermophilic organisms producing hydrolytic enzymes are still of high interest. Here we present our achievements in isolation of novel thermophilic bacteria and archaea with various hydrolytic activities.
Collapse
|