1
|
Sadiq FA, Wenwei L, Wei C, Jianxin Z, Zhang H. Transcriptional Changes in Bifidobacterium bifidum Involved in Synergistic Multispecies Biofilms. MICROBIAL ECOLOGY 2022; 84:922-934. [PMID: 34676439 DOI: 10.1007/s00248-021-01904-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Bifidobacterium bifidum is part of the core microbiota of healthy infant guts where it may form biofilms on epithelial cells, mucosa, and food particles in the gut lumen. Little is known about transcriptional changes in B. bifidum engaged in synergistic multispecies biofilms with ecologically relevant species of the human gut. Recently, we reported prevalence of synergism in mixed-species biofilms formed by the human gut microbiota. This study represents a comparative gene expression analysis of B. bifidum when grown in a single-species biofilm and in two multispecies biofilm consortia with Bifidobacterium longum subsp. infantis, Bacteroides ovatus, and Parabacteroides distasonis in order to identify genes involved in this adaptive process in mixed biofilms and the influence on its metabolic and functional traits. Changes up to 58% and 43% in its genome were found when it grew in three- and four-species biofilm consortia, respectively. Upregulation of genes of B. bifidum involved in carbohydrate metabolism (particularly the galE gene), quorum sensing (luxS and pfs), and amino acid metabolism (especially branched chain amino acids) in both multispecies biofilms, compared to single-species biofilms, suggest that they may be contributing factors for the observed synergistic biofilm production when B. bifidum coexists with other species in a biofilm.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Lu Wenwei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chen Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Zhao Jianxin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Gupta RS, Khadka B. Conserved Molecular Signatures in the Spike, Nucleocapsid, and Polymerase Proteins Specific for the Genus Betacoronavirus and Its Different Subgenera. Genes (Basel) 2022; 13:genes13030423. [PMID: 35327976 PMCID: PMC8949385 DOI: 10.3390/genes13030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Betacoronavirus, consisting of four main subgenera (Embecovirus, Merbecovirus, Nobecovirus, and Sarbecovirus), encompasses all clinically significant coronaviruses (CoVs), including SARS, MERS, and the SARS-CoV-2 virus responsible for current COVID-19 pandemic. Very few molecular characteristics are known that are specific for the genus Betacoronavirus or its different subgenera. In this study, our analyses of the sequences of four essential proteins of CoVs, viz., spike, nucleocapsid, envelope, and RNA-dependent RNA polymerase (RdRp), identified ten novel molecular signatures consisting of conserved signature indels (CSIs) in these proteins which are specific for the genus Betacoronavirus or its subgenera. Of these CSIs, two 14-aa-conserved deletions found within the heptad repeat motifs 1 and 2 of the spike protein are specific for all betacoronaviruses, except for their shared presence in the highly infectious avian coronavirus. Six additional CSIs present in the nucleocapsid protein and one CSI in the RdRp protein are distinctive characteristics of either the Merbecovirus, Nobecovirus, or Sarbecovirus subgenera. In addition, a 4-aa insert is present in the spike protein, which is uniquely shared by all viruses from the subgenera Merbecovirus, Nobecovirus, and Sarbecovirus, but absent in Embecovirus and all other genera of CoVs. This molecular signature provides evidence that viruses from the three subgenera sharing this CSI are more closely related to each other, and they evolved after the divergence of embecoviruses and other CoVs. As all CSIs specific for different groups of CoVs are flanked by conserved regions, their sequences provide novel means for identifying the above groups of CoVs and for developing novel diagnostic tests. Furthermore, our analyses of the structures of the spike and nucleocapsid proteins show that all identified CSIs are localized in the surface-exposed loops of these protein. It is postulated that these surface loops, through their interactions with other cellular proteins/ligands, play important roles in the biology/pathology of these viruses.
Collapse
Affiliation(s)
- Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada
- Correspondence:
| | - Bijendra Khadka
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
3
|
Gupta RS, Suggett C. Conserved Signatures in Protein Sequences Reliably Demarcate Different Clades of Rodents/Glires Species and Consolidate Their Evolutionary Relationships. Genes (Basel) 2022; 13:genes13020288. [PMID: 35205335 PMCID: PMC8871558 DOI: 10.3390/genes13020288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/18/2023] Open
Abstract
The grandorder Glires, consisting of the orders Rodentia and Lagomorpha, encompasses a significant portion of the extant mammalian species including Rat, Mouse, Squirrel, Guinea pig and Beaver. Glires species play an important role in the ecosystem and provide valuable animal models for genetic studies and animal testing. Thus, it is important to reliably determine their evolutionary relationships and identify molecular characteristics that are specific for different species groups within the Glires. In this work, we have constructed a phylogenetic tree for >30 genome sequenced Glires species based on concatenated sequences of 25 conserved proteins. In this tree, members of different orders, suborders, and families within Glires formed strongly supported clades, and their interrelationships were also generally reliably resolved. In parallel, we conducted comparative analyses on more than 1500 protein sequences from Glires species to identify highly conserved molecular markers. These markers were comprised of conserved signature indels (CSIs) in proteins, which are specific for different Rodentia/Glires clades. Of the 41 novel CSIs identified in this work, some are specific for the entire Glires, Rodentia, or Lagomorpha clades, whereas many others reliably demarcate different family/suborder level clades of Rodentia (viz. Myomorpha, Castorimorpha, Sciuromorpha, Hystricomorpha, and Muroidea). Additionally, some of the CSIs also provide information regarding the interrelationships among Rodentia subgroups. Our analysis has also identified one CSI that is commonly shared by the Glires and Scandentia species (tree shrew), however, its evolutionary significance is unclear. Several of the identifed rodents-specific CSIs are present in conserved disease-related proteins. Thus, they provide novel molecular markers for genetic and biochemical studies on the functions of these proteins.
Collapse
|
4
|
Khadka B, Gupta RS. Conserved molecular signatures in the spike protein provide evidence indicating the origin of SARS-CoV-2 and a Pangolin-CoV (MP789) by recombination(s) between specific lineages of Sarbecoviruses. PeerJ 2021; 9:e12434. [PMID: 35028194 PMCID: PMC8592051 DOI: 10.7717/peerj.12434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023] Open
Abstract
Both SARS-CoV-2 and SARS coronaviruses (CoVs) are members of the subgenus Sarbecovirus. To understand the origin of SARS-CoV-2, sequences for the spike and nucleocapsid proteins from sarbecoviruses were analyzed to identify molecular markers consisting of conserved inserts or deletions (termed CSIs) that are specific for either a particular clade of Sarbecovirus or are commonly shared by two or more clades of these viruses. Three novel CSIs in the N-terminal domain (NTD) of the spike protein S1-subunit (S1-NTD) are uniquely shared by SARS-CoV-2, Bat-CoV-RaTG13 and most pangolin CoVs (SARS-CoV-2r clade). Three other sarbecoviruses viz. bat-CoVZXC21, -CoVZC45 and -PrC31 (forming CoVZC/PrC31 clade), and a pangolin-CoV_MP789 also contain related CSIs in the same positions. In contrast to the S1-NTD, both SARS and SARS-CoV-2r viruses contain two large CSIs in the S1-C-terminal domain (S1-CTD) that are absent in the CoVZC/PrC31 clade. One of these CSIs, consisting of a 12 aa insert, is also present in the RShSTT clade (Cambodia-CoV strains). Sequence similarity studies show that the S1-NTD of SARS-CoV-2r viruses is most similar to the CoVZC/PrC31 clade, whereas their S1-CTD exhibits highest similarity to the RShSTT- (and the SARS-related) CoVs. Results from the shared presence of CSIs and sequence similarity studies on different CoV lineages support the inference that the SARS-CoV-2r cluster of viruses has originated by a genetic recombination between the S1-NTD of the CoVZC/PrC31 clade of CoVs and the S1-CTD of RShSTT/SARS viruses, respectively. We also present compelling evidence, based on the shared presence of CSIs and sequence similarity studies, that the pangolin-CoV_MP789, whose receptor-binding domain is most similar to the SARS-CoV-2 virus, has resulted from another independent recombination event involving the S1-NTD of the CoVZC/PrC31 CoVs and the S1-CTD of an unidentified SARS-CoV-2r related virus. The SARS-CoV-2 virus involved in this latter recombination event is postulated to be most similar to the SARS-CoV-2. Several other CSIs reported here are specific for other clusters of sarbecoviruses including a clade consisting of bat-SARS-CoVs (BM48-31/BGR/2008 and SARS_BtKY72). Structural mapping studies show that the identified CSIs form distinct loops/patches on the surface of the spike protein. It is hypothesized that these novel loops/patches on the spike protein, through their interactions with other host components, should play important roles in the biology/pathology of SARS-CoV-2 virus. Lastly, the CSIs specific for different clades of sarbecoviruses including SARS-CoV-2r clade provide novel means for the identification of these viruses and other potential applications.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Novel Sequence Feature of SecA Translocase Protein Unique to the Thermophilic Bacteria: Bioinformatics Analyses to Investigate Their Potential Roles. Microorganisms 2019; 8:microorganisms8010059. [PMID: 31905784 PMCID: PMC7023208 DOI: 10.3390/microorganisms8010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 11/25/2022] Open
Abstract
SecA is an evolutionarily conserved protein that plays an indispensable role in the secretion of proteins across the bacterial cell membrane. Comparative analyses of SecA homologs have identified two large conserved signature inserts (CSIs) that are unique characteristics of thermophilic bacteria. A 50 aa conserved insert in SecA is exclusively present in the SecA homologs from the orders Thermotogales and Aquificales, while a 76 aa insert in SecA is specific for the order Thermales and Hydrogenibacillus schlegelii. Phylogenetic analyses on SecA sequences show that the shared presence of these CSIs in unrelated groups of thermophiles is not due to lateral gene transfers, but instead these large CSIs have likely originated independently in these lineages due to their advantageous function. Both of these CSIs are located in SecA protein in a surface exposed region within the ATPase domain. To gain insights into the functional significance of the 50 aa CSI in SecA, molecular dynamics (MD) simulations were performed at two different temperatures using ADP-bound SecA from Thermotoga maritima. These analyses have identified a conserved network of water molecules near the 50 aa insert in which the Glu185 residue from the CSI is found to play a key role towards stabilizing these interactions. The results provide evidence for the possible role of the 50 aa CSI in stabilizing the binding interaction of ADP/ATP, which is required for SecA function. Additionally, the surface-exposed CSIs in SecA, due to their potential to make novel protein-protein interactions, could also contribute to the thermostability of SecA from thermophilic bacteria.
Collapse
|
6
|
Khadka B, Chatterjee T, Gupta BP, Gupta RS. Genomic Analyses Identify Novel Molecular Signatures Specific for the Caenorhabditis and other Nematode Taxa Providing Novel Means for Genetic and Biochemical Studies. Genes (Basel) 2019; 10:E739. [PMID: 31554175 PMCID: PMC6826867 DOI: 10.3390/genes10100739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
The phylum Nematoda encompasses numerous free-living as well as parasitic members, including the widely used animal model Caenorhabditis elegans, with significant impact on human health, agriculture, and environment. In view of the importance of nematodes, it is of much interest to identify novel molecular characteristics that are distinctive features of this phylum, or specific taxonomic groups/clades within it, thereby providing innovative means for diagnostics as well as genetic and biochemical studies. Using genome sequences for 52 available nematodes, a robust phylogenetic tree was constructed based on concatenated sequences of 17 conserved proteins. The branching of species in this tree provides important insights into the evolutionary relationships among the studied nematode species. In parallel, detailed comparative analyses on protein sequences from nematodes (Caenorhabditis) species reported here have identified 52 novel molecular signatures (or synapomorphies) consisting of conserved signature indels (CSIs) in different proteins, which are uniquely shared by the homologs from either all genome-sequenced Caenorhabditis species or a number of higher taxonomic clades of nematodes encompassing this genus. Of these molecular signatures, 39 CSIs in proteins involved in diverse functions are uniquely present in all Caenorhabditis species providing reliable means for distinguishing this group of nematodes in molecular terms. The remainder of the CSIs are specific for a number of higher clades of nematodes and offer important insights into the evolutionary relationships among these species. The structural locations of some of the nematodes-specific CSIs were also mapped in the structural models of the corresponding proteins. All of the studied CSIs are localized within the surface-exposed loops of the proteins suggesting that they may potentially be involved in mediating novel protein-protein or protein-ligand interactions, which are specific for these groups of nematodes. The identified CSIs, due to their exclusivity for the indicated groups, provide reliable means for the identification of species within these nematodes groups in molecular terms. Further, due to the predicted roles of these CSIs in cellular functions, they provide important tools for genetic and biochemical studies in Caenorhabditis and other nematodes.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| | - Tonuka Chatterjee
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| |
Collapse
|
7
|
Khadka B, Gupta RS. Novel Molecular Signatures in the PIP4K/PIP5K Family of Proteins Specific for Different Isozymes and Subfamilies Provide Important Insights into the Evolutionary Divergence of this Protein Family. Genes (Basel) 2019; 10:genes10040312. [PMID: 31010098 PMCID: PMC6523245 DOI: 10.3390/genes10040312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Members of the PIP4K/PIP5K family of proteins, which generate the highly important secondary messenger phosphatidylinositol-4,5-bisphosphate, play central roles in regulating diverse signaling pathways. In eukaryotic organisms, multiple isozymes and subfamilies of PIP4K/PIP5K proteins are found and it is of much interest to understand their evolution and species distribution and what unique molecular and biochemical characteristics distinguish specific isozymes and subfamilies of proteins. We report here the species distribution of different PIP4K/PIP5K family of proteins in eukaryotic organisms and phylogenetic analysis based on their protein sequences. Our results indicate that the distinct homologs of both PIP4K and PIP5K are found in different organisms belonging to the Holozoa clade of eukaryotes, which comprises of various metazoan phyla as well as their close unicellular relatives Choanoflagellates and Filasterea. In contrast, the deeper-branching eukaryotic lineages, as well as plants and fungi, contain only a single homolog of the PIP4K/PIP5K proteins. In parallel, our comparative analyses of PIP4K/PIP5K protein sequences have identified six highly-specific molecular markers consisting of conserved signature indels (CSIs) that are uniquely shared by either the PIP4K or PIP5K proteins, or both, or specific subfamilies of these proteins. Of these molecular markers, 2 CSIs are distinctive characteristics of all PIP4K homologs, 1 CSI distinguishes the PIP4K and PIP5K homologs from the Holozoa clade of species from the ancestral form of PIP4K/PIP5K found in deeper-branching eukaryotic lineages. The remaining three CSIs are specific for the PIP5Kα, PIP5Kβ, and PIP4Kγ subfamilies of proteins from vertebrate species. These molecular markers provide important means for distinguishing different PIP4K/PIP5K isozymes as well as some of their subfamilies. In addition, the distribution patterns of these markers in different isozymes provide important insights into the evolutionary divergence of PIP4K/PIP5K proteins. Our results support the view that the Holozoa clade of eukaryotic organisms shared a common ancestor exclusive of the other eukaryotic lineages and that the initial gene duplication event leading to the divergence of distinct types of PIP4K and PIP5K homologs occurred in a common ancestor of this clade. Based on the results gleaned from different studies presented here, a model for the evolutionary divergence of the PIP4K/PIP5K family of proteins is presented.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
8
|
Gupta RS. Impact of Genomics on Clarifying the Evolutionary Relationships amongst Mycobacteria: Identification of Molecular Signatures Specific for the Tuberculosis-Complex of Bacteria with Potential Applications for Novel Diagnostics and Therapeutics. High Throughput 2018; 7:ht7040031. [PMID: 30279355 PMCID: PMC6306742 DOI: 10.3390/ht7040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022] Open
Abstract
An alarming increase in tuberculosis (TB) caused by drug-resistant strains of Mycobacterium tuberculosis has created an urgent need for new antituberculosis drugs acting via novel mechanisms. Phylogenomic and comparative genomic analyses reviewed here reveal that the TB causing bacteria comprise a small group of organisms differing from all other mycobacteria in numerous regards. Comprehensive analyses of protein sequences from mycobacterial genomes have identified 63 conserved signature inserts and deletions (indels) (CSIs) in important proteins that are distinctive characteristics of the TB-complex of bacteria. The identified CSIs provide potential means for development of novel diagnostics as well as therapeutics for the TB-complex of bacteria based on four key observations: (i) The CSIs exhibit a high degree of exclusivity towards the TB-complex of bacteria; (ii) Earlier work on CSIs provide evidence that they play important/essential functions in the organisms for which they exhibit specificity; (iii) CSIs are located in surface-exposed loops of the proteins implicated in mediating novel interactions; (iv) Homologs of the CSIs containing proteins, or the CSIs in such homologs, are generally not found in humans. Based on these characteristics, it is hypothesized that the high-throughput virtual screening for compounds binding specifically to the CSIs (or CSI containing regions) and thereby inhibiting the cellular functions of the CSIs could lead to the discovery of a novel class of drugs specifically targeting the TB-complex of organisms.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
9
|
Gupta RS, Epand RM. Phylogenetic analysis of the diacylglycerol kinase family of proteins and identification of multiple highly-specific conserved inserts and deletions within the catalytic domain that are distinctive characteristics of different classes of DGK homologs. PLoS One 2017; 12:e0182758. [PMID: 28829789 PMCID: PMC5567653 DOI: 10.1371/journal.pone.0182758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023] Open
Abstract
Diacylglycerol kinase (DGK) family of proteins, which phosphorylates diacylglycerol into phosphatidic acid, play important role in controlling diverse cellular processes in eukaryotic organisms. Most vertebrate species contain 10 different DGK isozymes, which are grouped into 5 different classes based on the presence or absence of specific functional domains. However, the relationships among different DGK isozymes or how they have evolved from a common ancestor is unclear. The catalytic domain constitutes the single largest sequence element within the DGK proteins that is commonly and uniquely shared by all family members, but there is limited understanding of the overall function of this domain. In this work, we have used the catalytic domain sequences to construct a phylogenetic tree for the DGK family members from representatives of the main vertebrate classes and have also examined the distributions of various DGK isozymes in eukaryotic phyla. In a tree based on catalytic domain sequences, the DGK homologs belonging to different classes formed strongly supported clusters which were separated by long branches, and the different isozymes within each class also generally formed monophyletic groupings. Further, our analysis of the sequence alignments of catalytic domains has identified >10 novel sequence signatures consisting of conserved signature indels (inserts or deletions, CSIs) that are distinctive characteristics of either particular classes of DGK isozymes, or are commonly shared by members of two or more classes of DGK isozymes. The conserved indels in protein sequences are known to play important functional roles in the proteins/organisms where they are found. Thus, our identification of multiple highly specific CSIs that are distinguishing characteristics of different classes of DGK homologs points to the existence of important differences in the catalytic domain function among the DGK isozymes. The identified CSIs in conjunction with the results of blast searches on species distribution of DGK isozymes also provide useful insights into the evolutionary relationships among the DGK family of proteins.
Collapse
Affiliation(s)
- Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|