1
|
Metze F, Vollmers J, Lenk F, Kaster AK. First shotgun metagenomics study of Juan de Fuca deep-sea sediments reveals distinct microbial communities above, within, between, and below sulfate methane transition zones. Front Microbiol 2023; 14:1241810. [PMID: 38053553 PMCID: PMC10694467 DOI: 10.3389/fmicb.2023.1241810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/03/2023] [Indexed: 12/07/2023] Open
Abstract
The marine deep subsurface is home to a vast microbial ecosystem, affecting biogeochemical cycles on a global scale. One of the better-studied deep biospheres is the Juan de Fuca (JdF) Ridge, where hydrothermal fluid introduces oxidants into the sediment from below, resulting in two sulfate methane transition zones (SMTZs). In this study, we present the first shotgun metagenomics study of unamplified DNA from sediment samples from different depths in this stratified environment. Bioinformatic analyses showed a shift from a heterotrophic, Chloroflexota-dominated community above the upper SMTZ to a chemolithoautotrophic Proteobacteria-dominated community below the secondary SMTZ. The reintroduction of sulfate likely enables respiration and boosts active cells that oxidize acetate, iron, and complex carbohydrates to degrade dead biomass in this low-abundance, low-diversity environment. In addition, analyses showed many proteins of unknown function as well as novel metagenome-assembled genomes (MAGs). The study provides new insights into microbial communities in this habitat, enabled by an improved DNA extraction protocol that allows a less biased view of taxonomic composition and metabolic activities, as well as uncovering novel taxa. Our approach presents the first successful attempt at unamplified shotgun sequencing samples from beyond 50 meters below the seafloor and opens new ways for capturing the true diversity and functional potential of deep-sea sediments.
Collapse
Affiliation(s)
| | | | | | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz, Karlsruhe, Germany
| |
Collapse
|
2
|
Booker AE, D'Angelo T, Adams-Beyea A, Brown JM, Nigro O, Rappé MS, Stepanauskas R, Orcutt BN. Life strategies for Aminicenantia in subseafloor oceanic crust. THE ISME JOURNAL 2023; 17:1406-1415. [PMID: 37328571 PMCID: PMC10432499 DOI: 10.1038/s41396-023-01454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 06/18/2023]
Abstract
After decades studying the microbial "deep biosphere" in subseafloor oceanic crust, the growth and life strategies in this anoxic, low energy habitat remain poorly described. Using both single cell genomics and metagenomics, we reveal the life strategies of two distinct lineages of uncultivated Aminicenantia bacteria from the basaltic subseafloor oceanic crust of the eastern flank of the Juan de Fuca Ridge. Both lineages appear adapted to scavenge organic carbon, as each have genetic potential to catabolize amino acids and fatty acids, aligning with previous Aminicenantia reports. Given the organic carbon limitation in this habitat, seawater recharge and necromass may be important carbon sources for heterotrophic microorganisms inhabiting the ocean crust. Both lineages generate ATP via several mechanisms including substrate-level phosphorylation, anaerobic respiration, and electron bifurcation driving an Rnf ion translocation membrane complex. Genomic comparisons suggest these Aminicenantia transfer electrons extracellularly, perhaps to iron or sulfur oxides consistent with mineralogy of this site. One lineage, called JdFR-78, has small genomes that are basal to the Aminicenantia class and potentially use "primordial" siroheme biosynthetic intermediates for heme synthesis, suggesting this lineage retain characteristics of early evolved life. Lineage JdFR-78 contains CRISPR-Cas defenses to evade viruses, while other lineages contain prophage that may help prevent super-infection or no detectable viral defenses. Overall, genomic evidence points to Aminicenantia being well adapted to oceanic crust environments by taking advantage of simple organic molecules and extracellular electron transport.
Collapse
Affiliation(s)
- Anne E Booker
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Annabelle Adams-Beyea
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
- Eugene Lang College of Liberal Arts at The New School, New York City, NY, USA
| | - Julia M Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Olivia Nigro
- Department of Natural Science, Hawai'i Pacific University, Honolulu, HI, USA
| | - Michael S Rappé
- Hawai'i Institute of Marine Biology, SOEST, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | | | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA.
| |
Collapse
|
3
|
Zhou X, Lennon JT, Lu X, Ruan A. Anthropogenic activities mediate stratification and stability of microbial communities in freshwater sediments. MICROBIOME 2023; 11:191. [PMID: 37626433 PMCID: PMC10464086 DOI: 10.1186/s40168-023-01612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/04/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Freshwater sediment microbes are crucial decomposers that play a key role in regulating biogeochemical cycles and greenhouse gas emissions. They often exhibit a highly ordered structure along depth profiles. This stratification not only reflects redox effects but also provides valuable insights into historical transitions, as sediments serve as important archives for tracing environmental history. The Anthropocene, a candidate geological epoch, has recently garnered significant attention. However, the human impact on sediment zonation under the cover of natural redox niches remains poorly understood. Dam construction stands as one of the most far-reaching anthropogenic modifications of aquatic ecosystems. Here we attempted to identify the ecological imprint of damming on freshwater sediment microbiome. RESULTS We conducted a year-round survey on the sediment profiles of Lake Chaohu, a large shallow lake in China. Through depth-discrete shotgun metagenomics, metataxonomics, and geophysiochemical analyses, we unveiled a unique prokaryotic hierarchy shaped by the interplay of redox regime and historical damming (labeled by the 137Cs peak in AD 1963). Dam-induced initial differentiation was further amplified by nitrogen and methane metabolism, forming an abrupt transition governing nitrate-methane metabolic interaction and gaseous methane sequestration depth. Using a random forest algorithm, we identified damming-sensitive taxa that possess distinctive metabolic strategies, including energy-saving mechanisms, unique motility behavior, and deep-environment preferences. Moreover, null model analysis showed that damming altered microbial community assembly, from a selection-oriented deterministic process above to a more stochastic, dispersal-limited one below. Temporal investigation unveiled the rapid transition zone as an ecotone, characterized by high species richness, low community stability, and emergent stochasticity. Path analysis revealed the observed emergent stochasticity primarily came from the high metabolic flexibility, which potentially contributed to both ecological and statistical neutralities. CONCLUSIONS We delineate a picture in which dam-induced modifications in nutrient availability and sedimentation rates impact microbial metabolic activities and generate great changes in the community structure, assembly, and stability of the freshwater sediment microbiome. These findings reflect profound ecological and biogeochemical ramifications of human-Earth system interactions and help re-examine the mainstream views on the formation of sediment microbial stratification. Video Abstract.
Collapse
Affiliation(s)
- Xiaotian Zhou
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210024, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Xiang Lu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210024, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210024, China.
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China.
| |
Collapse
|
4
|
Morales-Rivera MF, Valenzuela-Miranda D, Nuñez-Acuña G, Benavente BP, Gallardo-Escárate C, Valenzuela-Muñoz V. Atlantic Salmon ( Salmo salar) Transfer to Seawater by Gradual Salinity Changes Exhibited an Increase in The Intestinal Microbial Abundance and Richness. Microorganisms 2022; 11:microorganisms11010076. [PMID: 36677368 PMCID: PMC9865641 DOI: 10.3390/microorganisms11010076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The host's physiological history and environment determine the microbiome structure. In that sense, the strategy used for the salmon transfer to seawater after parr-smolt transformation may influence the Atlantic salmon's intestinal microbiota. Therefore, this study aimed to explore the diversity and abundance of the Atlantic salmon intestinal microbiota and metagenome functional prediction during seawater transfer under three treatments. One group was exposed to gradual salinity change (GSC), the other to salinity shock (SS), and the third was fed with a functional diet (FD) before the seawater (SW) transfer. The microbial profile was assessed through full-16S rRNA gene sequencing using the Nanopore platform. In addition, metagenome functional prediction was performed using PICRUSt2. The results showed an influence of salinity changes on Atlantic salmon gut microbiota richness, diversity, and taxonomic composition. The findings reveal that GSC and the FD increased the Atlantic salmon smolt microbiota diversity, suggesting a positive association between the intestinal microbial community and fish health during seawater transfer. The reported knowledge can be applied to surveil the microbiome in smolt fish production, improving the performance of Atlantic salmon to seawater transfer.
Collapse
Affiliation(s)
- María F. Morales-Rivera
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
- Centro de Biotecnología, Universidad de Concepción, Concepcion 4030000, Chile
| | - Gustavo Nuñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Bárbara P. Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
- Centro de Biotecnología, Universidad de Concepción, Concepcion 4030000, Chile
- Correspondence: ; Tel.: +56-41-2204402
| |
Collapse
|
5
|
Microbial Diversity and Function in Shallow Subsurface Sediment and Oceanic Lithosphere of the Atlantis Massif. mBio 2021; 12:e0049021. [PMID: 34340550 PMCID: PMC8406227 DOI: 10.1128/mbio.00490-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The marine lithospheric subsurface is one of the largest biospheres on Earth; however, little is known about the identity and ecological function of microorganisms found in low abundance in this habitat, though these organisms impact global-scale biogeochemical cycling. Here, we describe the diversity and metabolic potential of sediment and endolithic (within rock) microbial communities found in ultrasmall amounts (101 to 104 cells cm−3) in the subsurface of the Atlantis Massif, an oceanic core complex on the Mid-Atlantic Ridge that was sampled on International Ocean Discovery Program (IODP) Expedition 357. This study used fluorescence-activated cell sorting (FACS) to enable the first amplicon, metagenomic, and single-cell genomic study of the shallow (<20 m below seafloor) subsurface of an actively serpentinizing marine system. The shallow subsurface biosphere of the Atlantis Massif was found to be distinct from communities observed in the nearby Lost City alkaline hydrothermal fluids and chimneys, yet similar to other low-temperature, aerobic subsurface settings. Genes associated with autotrophy were rare, although heterotrophy and aerobic carbon monoxide and formate cycling metabolisms were identified. Overall, this study reveals that the shallow subsurface of an oceanic core complex hosts a biosphere that is not fueled by active serpentinization reactions and by-products.
Collapse
|
6
|
Marlow J, Spietz R, Kim K, Ellisman M, Girguis P, Hatzenpichler R. Spatially resolved correlative microscopy and microbial identification reveal dynamic depth- and mineral-dependent anabolic activity in salt marsh sediment. Environ Microbiol 2021; 23:4756-4777. [PMID: 34346142 PMCID: PMC8456820 DOI: 10.1111/1462-2920.15667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 07/08/2021] [Indexed: 01/04/2023]
Abstract
Coastal salt marshes are key sites of biogeochemical cycling and ideal systems in which to investigate the community structure of complex microbial communities. Here, we clarify structural-functional relationships among microorganisms and their mineralogical environment, revealing previously undescribed metabolic activity patterns and precise spatial arrangements within salt marsh sediment. Following 3.7-day in situ incubations with a non-canonical amino acid that was incorporated into new biomass, samples were resin-embedded and analysed by correlative fluorescence and electron microscopy to map the microscale arrangements of anabolically active and inactive organisms alongside mineral grains. Parallel sediment samples were examined by fluorescence-activated cell sorting and 16S rRNA gene sequencing to link anabolic activity to taxonomic identity. Both approaches demonstrated a rapid decline in the proportion of anabolically active cells with depth into salt marsh sediment, from ~60% in the top centimetre to 9.4%-22.4% between 2 and 10 cm. From the top to the bottom, the most prominent active community members shifted from sulfur cycling phototrophic consortia, to putative sulfate-reducing bacteria likely oxidizing organic compounds, to fermentative lineages. Correlative microscopy revealed more abundant (and more anabolically active) organisms around non-quartz minerals including rutile, orthoclase and plagioclase. Microbe-mineral relationships appear to be dynamic and context-dependent arbiters of biogeochemical cycling.
Collapse
Affiliation(s)
- Jeffrey Marlow
- Department of Organismic and Evolutionary BiologyHarvard University16 Divinity AveCambridgeMassachusetts02138USA
| | - Rachel Spietz
- Department of Chemistry and Biochemistry, Department of Microbiology and Cell Biology, Thermal Biology Institute, and Center for Biofilm EngineeringMontana State UniversityBozemanMontana59717USA
| | - Keun‐Young Kim
- Department of NeurosciencesUniversity of California at San Diego School of Medicine and National Center for Microscopy and Imaging Research, University of CaliforniaSan DiegoLa JollaCalifornia92093USA
| | - Mark Ellisman
- Department of NeurosciencesUniversity of California at San Diego School of Medicine and National Center for Microscopy and Imaging Research, University of CaliforniaSan DiegoLa JollaCalifornia92093USA
- Department of PharmacologyUniversity of CaliforniaSan DiegoLa JollaCalifornia92161USA
| | - Peter Girguis
- Department of Organismic and Evolutionary BiologyHarvard University16 Divinity AveCambridgeMassachusetts02138USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Department of Microbiology and Cell Biology, Thermal Biology Institute, and Center for Biofilm EngineeringMontana State UniversityBozemanMontana59717USA
| |
Collapse
|
7
|
Abstract
The class Dehalococcoidia within the Chloroflexi phylum comprises the obligate organohalide-respiring genera Dehalococcoides, Dehalogenimonas, and “Candidatus Dehalobium.” Knowledge of the unique ecophysiology and biochemistry of Dehalococcoidia has been largely derived from studies with enrichment cultures and isolates from sites impacted with chlorinated pollutants; however, culture-independent surveys found Dehalococcoidia sequences in marine, freshwater, and terrestrial biomes considered to be pristine (i. The class Dehalococcoidia within the Chloroflexi phylum comprises the obligate organohalide-respiring genera Dehalococcoides, Dehalogenimonas, and “Candidatus Dehalobium.” Knowledge of the unique ecophysiology and biochemistry of Dehalococcoidia has been largely derived from studies with enrichment cultures and isolates from sites impacted with chlorinated pollutants; however, culture-independent surveys found Dehalococcoidia sequences in marine, freshwater, and terrestrial biomes considered to be pristine (i.e., not impacted with organohalogens of anthropogenic origin). The broad environmental distribution of Dehalococcoidia, as well as other organohalide-respiring bacteria, supports the concept of active halogen cycling and the natural formation of organohalogens in various ecosystems. Dechlorination reduces recalcitrance and renders organics susceptible to metabolic oxidation by diverse microbial taxa. During reductive dechlorination, hydrogenotrophic organohalide-respiring bacteria, in particular Dehalococcoidia, can consume hydrogen to low consumption threshold concentrations (<0.3 nM) and enable syntrophic oxidation processes. These functional attributes and the broad distribution imply that Dehalococcoidia play relevant roles in carbon cycling in anoxic ecosystems.
Collapse
|
8
|
Microbial Residents of the Atlantis Massif's Shallow Serpentinite Subsurface. Appl Environ Microbiol 2020; 86:AEM.00356-20. [PMID: 32220840 PMCID: PMC7237769 DOI: 10.1128/aem.00356-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/21/2020] [Indexed: 12/25/2022] Open
Abstract
The International Ocean Discovery Program Expedition 357—“Serpentinization and Life”—utilized seabed drills to collect rocks from the oceanic crust. The recovered rock cores represent the shallow serpentinite subsurface of the Atlantis Massif, where reactions between uplifted mantle rocks and water, collectively known as serpentinization, produce environmental conditions that can stimulate biological activity and are thought to be analogous to environments that were prevalent on the early Earth and perhaps other planets. The methodology and results of this project have implications for life detection experiments, including sample return missions, and provide a window into the diversity of microbial communities inhabiting subseafloor serpentinites. The Atlantis Massif rises 4,000 m above the seafloor near the Mid-Atlantic Ridge and consists of rocks uplifted from Earth’s lower crust and upper mantle. Exposure of the mantle rocks to seawater leads to their alteration into serpentinites. These aqueous geochemical reactions, collectively known as the process of serpentinization, are exothermic and are associated with the release of hydrogen gas (H2), methane (CH4), and small organic molecules. The biological consequences of this flux of energy and organic compounds from the Atlantis Massif were explored by International Ocean Discovery Program (IODP) Expedition 357, which used seabed drills to collect continuous sequences of shallow (<16 m below seafloor) marine serpentinites and mafic assemblages. Here, we report the census of microbial diversity in samples of the drill cores, as measured by environmental 16S rRNA gene amplicon sequencing. The problem of contamination of subsurface samples was a primary concern during all stages of this project, starting from the initial study design, continuing to the collection of samples from the seafloor, handling the samples shipboard and in the lab, preparing the samples for DNA extraction, and analyzing the DNA sequence data. To distinguish endemic microbial taxa of serpentinite subsurface rocks from seawater residents and other potential contaminants, the distributions of individual 16S rRNA gene sequences among all samples were evaluated, taking into consideration both presence/absence and relative abundances. Our results highlight a few candidate residents of the shallow serpentinite subsurface, including uncultured representatives of the Thermoplasmata, Acidobacteria, Acidimicrobia, and Chloroflexi. IMPORTANCE The International Ocean Discovery Program Expedition 357—“Serpentinization and Life”—utilized seabed drills to collect rocks from the oceanic crust. The recovered rock cores represent the shallow serpentinite subsurface of the Atlantis Massif, where reactions between uplifted mantle rocks and water, collectively known as serpentinization, produce environmental conditions that can stimulate biological activity and are thought to be analogous to environments that were prevalent on the early Earth and perhaps other planets. The methodology and results of this project have implications for life detection experiments, including sample return missions, and provide a window into the diversity of microbial communities inhabiting subseafloor serpentinites.
Collapse
|
9
|
Lang SQ, Brazelton WJ. Habitability of the marine serpentinite subsurface: a case study of the Lost City hydrothermal field. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20180429. [PMID: 31902336 PMCID: PMC7015304 DOI: 10.1098/rsta.2018.0429] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The Lost City hydrothermal field is a dramatic example of the biological potential of serpentinization. Microbial life is prevalent throughout the Lost City chimneys, powered by the hydrogen gas and organic molecules produced by serpentinization and its associated geochemical reactions. Microbial life in the serpentinite subsurface below the Lost City chimneys, however, is unlikely to be as dense or active. The marine serpentinite subsurface poses serious challenges for microbial activity, including low porosities, the combination of stressors of elevated temperature, high pH and a lack of bioavailable ∑CO2. A better understanding of the biological opportunities and challenges in serpentinizing systems would provide important insights into the total habitable volume of Earth's crust and for the potential of the origin and persistence of life in Earth's subsurface environments. Furthermore, the limitations to life in serpentinizing subsurface environments on Earth have significant implications for the habitability of subsurface environments on ocean worlds such as Europa and Enceladus. Here, we review the requirements and limitations of life in serpentinizing systems, informed by our research at the Lost City and the underwater mountain on which it resides, the Atlantis Massif. This article is part of a discussion meeting issue 'Serpentinite in the Earth System'.
Collapse
Affiliation(s)
- Susan Q. Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
10
|
Ramírez GA, Garber AI, Lecoeuvre A, D’Angelo T, Wheat CG, Orcutt BN. Ecology of Subseafloor Crustal Biofilms. Front Microbiol 2019; 10:1983. [PMID: 31551949 PMCID: PMC6736579 DOI: 10.3389/fmicb.2019.01983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/13/2019] [Indexed: 11/26/2022] Open
Abstract
The crustal subseafloor is the least explored and largest biome on Earth. Interrogating crustal life is difficult due to habitat inaccessibility, low-biomass and contamination challenges. Subseafloor observatories have facilitated the study of planktonic life in crustal aquifers, however, studies of life in crust-attached biofilms are rare. Here, we investigate biofilms grown on various minerals at different temperatures over 1-6 years at subseafloor observatories in the Eastern Pacific. To mitigate potential sequence contamination, we developed a new bioinformatics tool - TaxonSluice. We explore ecological factors driving community structure and potential function of biofilms by comparing our sequence data to previous amplicon and metagenomic surveys of this habitat. We reveal that biofilm community structure is driven by temperature rather than minerology, and that rare planktonic lineages colonize the crustal biofilms. Based on 16S rRNA gene overlap, we partition metagenome assembled genomes into planktonic and biofilm fractions and suggest that there are functional differences between these community types, emphasizing the need to separately examine each to accurately describe subseafloor microbe-rock-fluid processes. Lastly, we report that some rare lineages present in our warm and anoxic study site are also found in cold and oxic crustal fluids in the Mid-Atlantic Ridge, suggesting global crustal biogeography patterns.
Collapse
Affiliation(s)
- Gustavo A. Ramírez
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States
| | - Arkadiy I. Garber
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Aurélien Lecoeuvre
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- Université de Bretagne Occidentale, UFR Sciences et Techniques, Brest, France
| | - Timothy D’Angelo
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - C. Geoffrey Wheat
- Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
11
|
D'Hondt S, Pockalny R, Fulfer VM, Spivack AJ. Subseafloor life and its biogeochemical impacts. Nat Commun 2019; 10:3519. [PMID: 31388058 PMCID: PMC6684631 DOI: 10.1038/s41467-019-11450-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/10/2019] [Indexed: 11/08/2022] Open
Abstract
Subseafloor microbial activities are central to Earth's biogeochemical cycles. They control Earth's surface oxidation and major aspects of ocean chemistry. They affect climate on long timescales and play major roles in forming and destroying economic resources. In this review, we evaluate present understanding of subseafloor microbes and their activities, identify research gaps, and recommend approaches to filling those gaps. Our synthesis suggests that chemical diffusion rates and reaction affinities play a primary role in controlling rates of subseafloor activities. Fundamental aspects of subseafloor communities, including features that enable their persistence at low catabolic rates for millions of years, remain unknown.
Collapse
Affiliation(s)
- Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Rhode Island, 02882, USA.
| | - Robert Pockalny
- Graduate School of Oceanography, University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Rhode Island, 02882, USA
| | - Victoria M Fulfer
- Graduate School of Oceanography, University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Rhode Island, 02882, USA
| | - Arthur J Spivack
- Graduate School of Oceanography, University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Rhode Island, 02882, USA
| |
Collapse
|
12
|
Kerrigan Z, Kirkpatrick JB, D'Hondt S. Influence of 16S rRNA Hypervariable Region on Estimates of Bacterial Diversity and Community Composition in Seawater and Marine Sediment. Front Microbiol 2019; 10:1640. [PMID: 31379788 PMCID: PMC6646839 DOI: 10.3389/fmicb.2019.01640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
To assess the influence of 16S ribosomal RNA (rRNA) tag choice on estimates of microbial diversity and/or community composition in seawater and marine sediment, we examined bacterial diversity and community composition from a site in the Central North Atlantic and a site in the Equatorial Pacific. For each site, we analyzed samples from four zones in the water column, a seafloor sediment sample, and two subseafloor sediment horizons (with stratigraphic ages of 1.5 and 5.5 million years old). We amplified both the V4 and V6 hypervariable regions of the 16S rRNA gene and clustered the sequences into operational taxonomic units (OTUs) of 97% similarity to analyze for diversity and community composition. OTU richness is much higher with the V6 tag than with the V4 tag, and subsequently OTU-level community composition is quite different between the two tags. Vertical patterns of relative diversity are broadly the same for both tags, with maximum taxonomic richness in seafloor sediment and lowest richness in subseafloor sediment at both geographic locations. Genetic dissimilarity between sample locations is also broadly the same for both tags. Community composition is very similar for both tags at the class level, but very different at the level of 97% similar OTUs. Class-level diversity and community composition of water-column samples are very similar at each water depth between the Atlantic and Pacific. However, sediment communities differ greatly from the Atlantic site to the Pacific site. Finally, for relative patterns of diversity and class-level community composition, deep sequencing and shallow sequencing provide similar results.
Collapse
Affiliation(s)
- Zak Kerrigan
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
| | | | - Steven D'Hondt
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
| |
Collapse
|
13
|
Kirkpatrick JB, Walsh EA, D'Hondt S. Microbial Selection and Survival in Subseafloor Sediment. Front Microbiol 2019; 10:956. [PMID: 31139156 PMCID: PMC6527604 DOI: 10.3389/fmicb.2019.00956] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/16/2019] [Indexed: 01/23/2023] Open
Abstract
Many studies have examined relationships of microorganisms to geochemical zones in subseafloor sediment. However, responses to selective pressure and patterns of community succession with sediment depth have rarely been examined. Here we use 16S rDNA sequencing to examine the succession of microbial communities at sites in the Indian Ocean and the Bering Sea. The sediment ranges in depth from 0.16 to 332 m below seafloor and in age from 660 to 1,300,000 years. The majority of subseafloor taxonomic diversity is present in the shallowest depth sampled. The best predictor of sequence presence or absence in the oldest sediment is relative abundance in the near-seafloor sediment. This relationship suggests that perseverance of specific taxa into deep, old sediment is primarily controlled by the taxonomic abundance that existed when the sediment was near the seafloor. The operational taxonomic units that dominate at depth comprise a subset of the local seafloor community at each site, rather than a grown-in group of geographically widespread subseafloor specialists. At both sites, most taxa classified as abundant decrease in relative frequency with increasing sediment depth and age. Comparison of community composition to cell counts at the Bering Sea site indicates that the rise of the few dominant taxa in the deep subseafloor community does not require net replication, but might simply result from lower mortality relative to competing taxa on the long timescale of community burial.
Collapse
Affiliation(s)
- John B Kirkpatrick
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States.,The Evergreen State College, Olympia, WA, United States
| | - Emily A Walsh
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
| | - Steven D'Hondt
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
| |
Collapse
|
14
|
Jones RM, Goordial JM, Orcutt BN. Low Energy Subsurface Environments as Extraterrestrial Analogs. Front Microbiol 2018; 9:1605. [PMID: 30072971 PMCID: PMC6058055 DOI: 10.3389/fmicb.2018.01605] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Earth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth's low energy subsurface habitats.
Collapse
Affiliation(s)
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
15
|
Zinke LA, Reese BK, McManus J, Wheat CG, Orcutt BN, Amend JP. Sediment Microbial Communities Influenced by Cool Hydrothermal Fluid Migration. Front Microbiol 2018; 9:1249. [PMID: 29951048 PMCID: PMC6008377 DOI: 10.3389/fmicb.2018.01249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/23/2018] [Indexed: 12/03/2022] Open
Abstract
Cool hydrothermal systems (CHSs) are prevalent across the seafloor and discharge fluid volumes that rival oceanic input from rivers, yet the microbial ecology of these systems are poorly constrained. The Dorado Outcrop on the ridge flank of the Cocos Plate in the northeastern tropical Pacific Ocean is the first confirmed CHS, discharging minimally altered <15°C fluid from the shallow lithosphere through diffuse venting and seepage. In this paper, we characterize the resident sediment microbial communities influenced by cool hydrothermal advection, which is evident from nitrate and oxygen concentrations. 16S rRNA gene sequencing revealed that Thaumarchaea, Proteobacteria, and Planctomycetes were the most abundant phyla in all sediments across the system regardless of influence from seepage. Members of the Thaumarchaeota (Marine Group I), Alphaproteobacteria (Rhodospirillales), Nitrospirae, Nitrospina, Acidobacteria, and Gemmatimonadetes were enriched in the sediments influenced by CHS advection. Of the various geochemical parameters investigated, nitrate concentrations correlated best with microbial community structure, indicating structuring based on seepage of nitrate-rich fluids. A comparison of microbial communities from hydrothermal sediments, seafloor basalts, and local seawater at Dorado Outcrop showed differences that highlight the distinct niche space in CHS. Sediment microbial communities from Dorado Outcrop differ from those at previously characterized, warmer CHS sediment, but are similar to deep-sea sediment habitats with surficial ferromanganese nodules, such as the Clarion Clipperton Zone. We conclude that cool hydrothermal venting at seafloor outcrops can alter the local sedimentary oxidation–reduction pathways, which in turn influences the microbial communities within the fluid discharge affected sediment.
Collapse
Affiliation(s)
- Laura A Zinke
- Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, United States
| | - James McManus
- Department of Geosciences, The University of Akron, Akron, OH, United States.,Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Charles G Wheat
- Global Undersea Research Unit, University of Alaska Fairbanks, Moss Landing, CA, United States
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Jan P Amend
- Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, United States.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Sheik CS, Reese BK, Twing KI, Sylvan JB, Grim SL, Schrenk MO, Sogin ML, Colwell FS. Identification and Removal of Contaminant Sequences From Ribosomal Gene Databases: Lessons From the Census of Deep Life. Front Microbiol 2018; 9:840. [PMID: 29780369 PMCID: PMC5945997 DOI: 10.3389/fmicb.2018.00840] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/12/2018] [Indexed: 11/15/2022] Open
Abstract
Earth’s subsurface environment is one of the largest, yet least studied, biomes on Earth, and many questions remain regarding what microorganisms are indigenous to the subsurface. Through the activity of the Census of Deep Life (CoDL) and the Deep Carbon Observatory, an open access 16S ribosomal RNA gene sequence database from diverse subsurface environments has been compiled. However, due to low quantities of biomass in the deep subsurface, the potential for incorporation of contaminants from reagents used during sample collection, processing, and/or sequencing is high. Thus, to understand the ecology of subsurface microorganisms (i.e., the distribution, richness, or survival), it is necessary to minimize, identify, and remove contaminant sequences that will skew the relative abundances of all taxa in the sample. In this meta-analysis, we identify putative contaminants associated with the CoDL dataset, recommend best practices for removing contaminants from samples, and propose a series of best practices for subsurface microbiology sampling. The most abundant putative contaminant genera observed, independent of evenness across samples, were Propionibacterium, Aquabacterium, Ralstonia, and Acinetobacter. While the top five most frequently observed genera were Pseudomonas, Propionibacterium, Acinetobacter, Ralstonia, and Sphingomonas. The majority of the most frequently observed genera (high evenness) were associated with reagent or potential human contamination. Additionally, in DNA extraction blanks, we observed potential archaeal contaminants, including methanogens, which have not been discussed in previous contamination studies. Such contaminants would directly affect the interpretation of subsurface molecular studies, as methanogenesis is an important subsurface biogeochemical process. Utilizing previously identified contaminant genera, we found that ∼27% of the total dataset were identified as contaminant sequences that likely originate from DNA extraction and DNA cleanup methods. Thus, controls must be taken at every step of the collection and processing procedure when working with low biomass environments such as, but not limited to, portions of Earth’s deep subsurface. Taken together, we stress that the CoDL dataset is an incredible resource for the broader research community interested in subsurface life, and steps to remove contamination derived sequences must be taken prior to using this dataset.
Collapse
Affiliation(s)
- Cody S Sheik
- Department of Biology and Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, United States
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| | - Katrina I Twing
- Department of Biology, The University of Utah, Salt Lake City, UT, United States
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Sharon L Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States
| | - Mitchell L Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Frederick S Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|