1
|
Wang J, Hou Y, Mu L, Yang M, Ai X. Gut microbiota contributes to the intestinal and extraintestinal immune homeostasis by balancing Th17/Treg cells. Int Immunopharmacol 2024; 143:113570. [PMID: 39547012 DOI: 10.1016/j.intimp.2024.113570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Gut microbiota is generally considered to play an important role in host health due to its extensive immunomodulatory activities. Th17 and Treg cells are two important CD4+ T cell subsets involved in immune regulation, and their imbalance is closely tied to many immune diseases. Recently, abundant researches have highlighted the importance of gut microbiota in supporting intestinal and extraintestinal immunity through the balance of Th17 and Treg cells. Here, we presented a comprehensive review of these findings. This review first provided an overview of gut microbiota, along with Th17/Treg cell differentiation and cytokine production. Subsequently, the review summarized the regulatory effects of gut microbiota (in terms of species, components, and metabolites) on the Th17/Treg cell balance in the local intestines and extraintestinal organs, such as lung, liver, brain, kidney, and bone. Specifically, the Th17 and Treg cells that can be modulated by gut microbiota originate not only from the gut and extraintestinal organs, but also from peripheral blood and spleen. Then, the microbial therapeutics, including probiotics, prebiotics, postbiotics, and fecal microbiota transplantation (FMT), were also reviewed because of their therapeutic potentials in addressing intestinal and extraintestinal diseases via the Th17/Treg axis. Finally, the review discussed the clinical applications and future study prospects of microbial therapeutics by targeting the Th17/Treg cell balance. In conclusion, this review focused on elucidating the regulatory effects of gut microbiota in balancing Th17/Treg cells to maintain intestinal and extraintestinal immune homeostasis, contributing to the further development and promotion of microbial therapeutics.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Yaqin Hou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Lifeng Mu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaopeng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
2
|
López-Villodres JA, Escamilla A, Mercado-Sáenz S, Alba-Tercedor C, Rodriguez-Perez LM, Arranz-Salas I, Sanchez-Varo R, Bermúdez D. Microbiome Alterations and Alzheimer's Disease: Modeling Strategies with Transgenic Mice. Biomedicines 2023; 11:1846. [PMID: 37509487 PMCID: PMC10377071 DOI: 10.3390/biomedicines11071846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, the role of the microbiota-gut-brain axis has been gaining momentum in the context of many neurodegenerative and metabolic disorders, including Alzheimer's disease (AD) and diabetes, respectively. Notably, a balanced gut microbiota contributes to the epithelial intestinal barrier maintenance, modulates the host immune system, and releases neurotransmitters and/or neuroprotective short-chain fatty acids. However, dysbiosis may provoke immune dysregulation, impacting neuroinflammation through peripheral-central immune communication. Moreover, lipopolysaccharide or detrimental microbial end-products can cross the blood-brain barrier and induce or at least potentiate the neuropathological progression of AD. Thus, after repeated failure to find a cure for this dementia, a necessary paradigmatic shift towards considering AD as a systemic disorder has occurred. Here, we present an overview of the use of germ-free and/or transgenic animal models as valid tools to unravel the connection between dysbiosis, metabolic diseases, and AD, and to investigate novel therapeutical targets. Given the high impact of dietary habits, not only on the microbiota but also on other well-established AD risk factors such as diabetes or obesity, consistent changes of lifestyle along with microbiome-based therapies should be considered as complementary approaches.
Collapse
Affiliation(s)
- Juan Antonio López-Villodres
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Alejandro Escamilla
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Silvia Mercado-Sáenz
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Carmen Alba-Tercedor
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Luis Manuel Rodriguez-Perez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Isabel Arranz-Salas
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Unidad de Anatomia Patologica, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Raquel Sanchez-Varo
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Diego Bermúdez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| |
Collapse
|
3
|
Shang J, Yang S, Tang Z, Chen Y, Duan B, Meng X. Bifidobacterium bifidum H3-R2 and Its Molecular Communication within the Context of Ulcerative Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11678-11688. [PMID: 36095239 DOI: 10.1021/acs.jafc.2c02909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bifidobacteria are important mediators of immune system development within the gastrointestinal system and immunological homeostasis. The present study explored the anti-colitic activity of Bifidobacterium bifidum H3-R2 in a murine dextran sulfate sodium (DSS)-induced model of ulcerative colitis (UC). Moreover, this study offers novel insight regarding the molecular basis for the probiotic properties of B. bifidum H3-R2 by analyzing the underlying mechanisms whereby B. bifidum H3-R2-derived proteins affect the intestinal barrier. B. bifidum H3-R2 administration was sufficient to alleviate clinical manifestations consistent with DSS-induced colitis, restoring aberrant inflammatory cytokine production, enhancing tight junction protein expression, and positively impacting overall intestinal microecological homeostasis in these animals. Moreover, the bifidobacteria-derived GroEL and transaldolase (TAL) proteins were found to regulate tight junction protein expression via the NF-κB, myosin light chain kinase (MLCK), RhoA/Rho-associated protein kinase (ROCK), and mitogen-activated protein kinase (MAPK) signaling pathways, preventing the lipopolysaccharide (LPS)-mediated disruption of the intestinal epithelial cell barrier.
Collapse
Affiliation(s)
- Jiacui Shang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shuo Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Zongxin Tang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yuhan Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bofan Duan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Almeida JI, Tenreiro MF, Martinez-Santamaria L, Guerrero-Aspizua S, Gisbert JP, Alves PM, Serra M, Baptista PM. Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 2022; 76:694-725. [PMID: 34715263 DOI: 10.1016/j.jhep.2021.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022]
Abstract
As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.
Collapse
Affiliation(s)
- Joana I Almeida
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Miguel F Tenreiro
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Lucía Martinez-Santamaria
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Sara Guerrero-Aspizua
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Department. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Margarida Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
5
|
Blanco-Míguez A, Tamés H, Ruas-Madiedo P, Sánchez B. Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer's Disease-Related Pathways in the SH-SY5Y Neural Cell Line. Nutrients 2021; 13:nu13113868. [PMID: 34836123 PMCID: PMC8624230 DOI: 10.3390/nu13113868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Here, we present the first in silico and in vitro evidence of Aβ-like peptides released from meaningful members of the gut microbiome (mostly from the Clostridiales order). Two peptides with high homology to the human Aβ peptide domain were synthesized and tested in vitro in a neuron cell-line model. Gene expression profile analysis showed that one of them induced whole gene pathways related to AD, opening the way to translational approaches to assess whether gut microbiota-derived peptides might be implicated in the neurodegenerative processes related to AD. This exploratory work opens the path to new approaches for understanding the relationship between the gut microbiome and the triggering of potential molecular events leading to AD. As microbiota can be modified using diet, tools for precise nutritional intervention or targeted microbiota modification in animal models might help us to understand the individual roles of gut bacteria releasing Aβ-like peptides and therefore their contribution to this progressive disease.
Collapse
Affiliation(s)
- Aitor Blanco-Míguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain; (A.B.-M.); (H.T.); (P.R.-M.)
- CIBIO—Dipartimento di Biologia Cellulare, Computazionale e Integrata, University of Trento, Via Sommarive 9, 38123 Povo, Italy
| | - Hector Tamés
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain; (A.B.-M.); (H.T.); (P.R.-M.)
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain; (A.B.-M.); (H.T.); (P.R.-M.)
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Borja Sánchez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain; (A.B.-M.); (H.T.); (P.R.-M.)
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Correspondence:
| |
Collapse
|
6
|
Salekeen R, Siam MHB, Sharif DI, Lustgarten MS, Billah MM, Islam KMD. In silico insights into potential gut microbial modulation of NAD+ metabolism and longevity. J Biochem Mol Toxicol 2021; 35:e22925. [PMID: 34580953 DOI: 10.1002/jbt.22925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
Recent evidence has prompted the notion of gut-microbial signatures as an indirect marker of aging and aging-associated decline in humans. However, the underlying host-symbiont molecular interactions contributing to these signatures remain poorly understood. In this study, we address this gap using cheminformatic analyses to elucidate potential gut microbial metabolites that may perturb the longevity-associated NAD+ metabolic network. In silico ADMET, KEGG interaction analysis, molecular docking, molecular dynamics simulation, and molecular mechanics calculation predict a large number of safe and bioavailable microbial metabolites to be direct and/or indirect activators of NAD+-dependent sirtuin proteins. Our simulation results suggest dihydropteroate, phenylpyruvic acid, indole-3-propionic acid, phenyllactic acid, all-trans-retinoic acid, and multiple deoxy-, methyl-, and cyclic nucleotides from intestinal microbiota as the best-performing regulators of NAD+ metabolism. Retracing these molecules to their source microorganisms also suggest commensal Escherichia, Bacteroides, Bifidobacteria, and Lactobacilli to be associated with the highest number of pro-longevity metabolites. These findings from our early-stage study, therefore, provide an informatics-based context for previous evidence in the area and grant novel insights for future clinical investigation intersecting anti-aging drug discovery, probiotics, and gut microbial signatures.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Hasanul Banna Siam
- Department of Microbiology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Dilara Islam Sharif
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, Bangladesh
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts, USA
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
7
|
Shang J, Wan F, Zhao L, Meng X, Li B. Potential Immunomodulatory Activity of a Selected Strain Bifidobacterium bifidum H3-R2 as Evidenced in vitro and in Immunosuppressed Mice. Front Microbiol 2020; 11:2089. [PMID: 32983062 PMCID: PMC7491056 DOI: 10.3389/fmicb.2020.02089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/08/2020] [Indexed: 12/30/2022] Open
Abstract
The microbiota is directly involved in the development and modulation of the intestinal immune system. In particular, members of the genus Bifidobacterium play a primary role in immune regulation. In the present study, Bifidobacterium bifidum H3-R2 was screened from 15 bifidobacterium strains by in vitro experiment, showing a positive tolerance to digestive tract conditions, adhesion ability to intestinal epithelial cells and a regulatory effect on immune cell activity. Immunostimulatory activity of B. bifidum H3-R2 was also elucidated in vivo in cytoxan (CTX)-treated mice. The results showed that the administration of B. bifidum H3-R2 ameliorated the CTX-induced bodyweight loss and imbalanced expression of inflammatory cytokines, enhanced the production of secretory immunoglobulin A (SIgA), and promoted splenic lymphocyte proliferation, natural killer (NK) cell activity and phagocytosis of macrophages in immunosuppressed mice. In addition, B. bifidum H3-R2 restored injured intestinal mucosal, and increased the villus length and crypt depth in CTX-treated mice. The results could be helpful for understanding the functions of B. bifidum H3-R2, supporting its potential as a novel probiotic for immunoregulation.
Collapse
Affiliation(s)
- Jiacui Shang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Feng Wan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Le Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,School of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,School of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Amoroso C, Perillo F, Strati F, Fantini M, Caprioli F, Facciotti F. The Role of Gut Microbiota Biomodulators on Mucosal Immunity and Intestinal Inflammation. Cells 2020; 9:cells9051234. [PMID: 32429359 PMCID: PMC7291275 DOI: 10.3390/cells9051234] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations of the gut microbiota may cause dysregulated mucosal immune responses leading to the onset of inflammatory bowel diseases (IBD) in genetically susceptible hosts. Restoring immune homeostasis through the normalization of the gut microbiota is now considered a valuable therapeutic approach to treat IBD patients. The customization of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics and faecal microbiota transplantation, is therefore considered to support current therapies in IBD management. In this review, we will discuss recent advancements in the understanding of host−microbe interactions in IBD and the basis to promote homeostatic immune responses through microbe-targeted therapies. By considering gut microbiota dysbiosis as a key feature for the establishment of chronic inflammatory events, in the near future it will be suitable to design new cost-effective, physiologic, and patient-oriented therapeutic strategies for the treatment of IBD that can be applied in a personalized manner.
Collapse
Affiliation(s)
- Chiara Amoroso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (C.A.); (F.P.); (F.S.)
| | - Federica Perillo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (C.A.); (F.P.); (F.S.)
| | - Francesco Strati
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (C.A.); (F.P.); (F.S.)
| | - Massimo Fantini
- Gastroenterology Unit, Duilio Casula Hospital, AOU Cagliari, 09042 Cagliari, Italy;
- Department of Medical Science and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Flavio Caprioli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20135 Milan, Italy;
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (C.A.); (F.P.); (F.S.)
- Correspondence:
| |
Collapse
|
9
|
Delgado S, Sánchez B, Margolles A, Ruas-Madiedo P, Ruiz L. Molecules Produced by Probiotics and Intestinal Microorganisms with Immunomodulatory Activity. Nutrients 2020; 12:nu12020391. [PMID: 32024101 PMCID: PMC7071221 DOI: 10.3390/nu12020391] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. The probiotic microorganisms most commonly used in the food and pharmacy industry belong to Lactobacillus and Bifidobacterium, and several strains of these genera have demonstrated beneficial attributes. In addition, some other intestinal bacteria inhabiting the human microbiota, such as Faecalibacterium prausnitzii and Akkermansia muciniphila, have recently been discovered and are able to display health-promoting effects in animal and human trials. The beneficial properties of probiotics have been known for a long time, although little is known about the molecular mechanisms and the molecules responsible for their effects. However, in recent years, advances in microbiome studies, and the use of novel analytical and molecular techniques have allowed a deeper insight into their effects at the molecular level. This review summarizes the current knowledge of some of the molecules of probiotics and other intestinal commensal bacteria responsible for their immunomodulatory effect, focusing on those with more solid scientific evidence.
Collapse
Affiliation(s)
- Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias (IPLA)-Spanish National Research Council (CSIC), Villaviciosa, 33300 Asturias, Spain; (S.D.); (B.S.); (A.M.); (P.R.-M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias (IPLA)-Spanish National Research Council (CSIC), Villaviciosa, 33300 Asturias, Spain; (S.D.); (B.S.); (A.M.); (P.R.-M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias (IPLA)-Spanish National Research Council (CSIC), Villaviciosa, 33300 Asturias, Spain; (S.D.); (B.S.); (A.M.); (P.R.-M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias (IPLA)-Spanish National Research Council (CSIC), Villaviciosa, 33300 Asturias, Spain; (S.D.); (B.S.); (A.M.); (P.R.-M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias (IPLA)-Spanish National Research Council (CSIC), Villaviciosa, 33300 Asturias, Spain; (S.D.); (B.S.); (A.M.); (P.R.-M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
- Correspondence:
| |
Collapse
|
10
|
Pyclik M, Srutkova D, Schwarzer M, Górska S. Bifidobacteria cell wall-derived exo-polysaccharides, lipoteichoic acids, peptidoglycans, polar lipids and proteins - their chemical structure and biological attributes. Int J Biol Macromol 2019; 147:333-349. [PMID: 31899242 DOI: 10.1016/j.ijbiomac.2019.12.227] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
A variety of health benefits has been documented to be associated with the consumption of probiotic bacteria, namely bifidobacteria and lactobacilli. Thanks to the scientific advances in recent years we are beginning to understand the molecular mechanisms by which bacteria in general and probiotic bacteria in particular act as host physiology and immune system modulators. More recently, the focus has shifted from live bacteria towards bacteria-derived defined molecules, so called postbiotics. These molecules may represent safer alternative compared to the live bacteria while retaining the desired effects on the host. The excellent source of effector macromolecules is the bacterial envelope. It contains compounds that are pivotal in the adhesion phenomenon, provide direct bacteria-to-host signaling capacity and the associated physiological impact and immunomodulatory properties of bacteria. Here we comprehensively review the structure and biological role of Bifidobacterium surface and cell wall molecules: exopolysaccharides, cell wall polysaccharides, lipoteichoic acids, polar lipids, peptidoglycans and proteins. We discuss their involvement in direct signaling to the host cells and their described immunomodulatory effects.
Collapse
Affiliation(s)
- Marcelina Pyclik
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
11
|
Fernández-Tomé S, Marin AC, Ortega Moreno L, Baldan-Martin M, Mora-Gutiérrez I, Lanas-Gimeno A, Moreno-Monteagudo JA, Santander C, Sánchez B, Chaparro M, Gisbert JP, Bernardo D. Immunomodulatory Effect of Gut Microbiota-Derived Bioactive Peptides on Human Immune System from Healthy Controls and Patients with Inflammatory Bowel Disease. Nutrients 2019; 11:nu11112605. [PMID: 31683517 PMCID: PMC6893616 DOI: 10.3390/nu11112605] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Bioactive peptides secreted by probiotic Bifidobacterium longum (peptide B7) and opportunistic pathogen Bacteroides fragilis (peptide B12) modulate the intestinal cytokine milieu in health. Here, we characterized their capacity to modulate both the mucosal cytokine production and the phenotype of circulating antigen presenting cells (APCs) in active inflammatory bowel disease (IBD). The IBD mucosa produced higher levels of pro-inflammatory cytokines referred to healthy controls (HCs). Peptides B7 and B12, however, did not ameliorate the mucosal cytokine milieu in IBD. Human circulating APCs (B-cells, monocytes, plasmacytoid dendritic cells (pDCs), and conventional dendritic cells (cDCs)) were characterized by flow cytometry in presence/absence of the peptides. Circulating B-cells, monocytes, and cDCs from IBD patients were more activated than those from HCs. Peptide B7, but not B12, decreased CCR2 expression on all APC subsets from HC, but not IBD patients. Moreover, both peptides tend to further increase their pro-inflammatory profile in IBD. In summary, IBD patients display mucosal and circulating APC pro-inflammatory properties. Peptide B7 immunomodulatory capacity elicited over circulating APCs from HC, but not IBD patients, suggests the presence of disrupted modulatory mechanisms for this peptide in IBD. Future studies should address the effect of bacteria-derived immunomodulatory peptides in non-inflamed (quiescent) IBD patients.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
| | - Alicia C Marin
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain.
| | - Lorena Ortega Moreno
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
| | - Montserrat Baldan-Martin
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain.
| | - Irene Mora-Gutiérrez
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
| | - Aitor Lanas-Gimeno
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
| | - José Andrés Moreno-Monteagudo
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
| | - Cecilio Santander
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
| | - Borja Sánchez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Asturias, Spain.
| | - María Chaparro
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain.
| | - Javier P Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain.
| | - David Bernardo
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain.
- Mucosal Immunology Lab, Instituto de Biología y Genética Molecular (IBGM, Universidad de Valladolid-CSIC), 47003 Valladolid, Spain.
| |
Collapse
|
12
|
Chong PP, Chin VK, Looi CY, Wong WF, Madhavan P, Yong VC. The Microbiome and Irritable Bowel Syndrome - A Review on the Pathophysiology, Current Research and Future Therapy. Front Microbiol 2019; 10:1136. [PMID: 31244784 PMCID: PMC6579922 DOI: 10.3389/fmicb.2019.01136] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/06/2019] [Indexed: 11/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional disorder which affects a large proportion of the population globally. The precise etiology of IBS is still unknown, although consensus understanding proposes IBS to be of multifactorial origin with yet undefined subtypes. Genetic and epigenetic factors, stress-related nervous and endocrine systems, immune dysregulation and the brain-gut axis seem to be contributing factors that predispose individuals to IBS. In addition to food hypersensitivity, toxins and adverse life events, chronic infections and dysbiotic gut microbiota have been suggested to trigger IBS symptoms in tandem with the predisposing factors. This review will summarize the pathophysiology of IBS and the role of gut microbiota in relation to IBS. Current methodologies for microbiome studies in IBS such as genome sequencing, metagenomics, culturomics and animal models will be discussed. The myriad of therapy options such as immunoglobulins (immune-based therapy), probiotics and prebiotics, dietary modifications including FODMAP restriction diet and gluten-free diet, as well as fecal transplantation will be reviewed. Finally this review will highlight future directions in IBS therapy research, including identification of new molecular targets, application of 3-D gut model, gut-on-a-chip and personalized therapy.
Collapse
Affiliation(s)
- Pei Pei Chong
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Voon Kin Chin
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Voon Chen Yong
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
13
|
Cutting Edge: Probiotics and Fecal Microbiota Transplantation in Immunomodulation. J Immunol Res 2019; 2019:1603758. [PMID: 31143780 PMCID: PMC6501133 DOI: 10.1155/2019/1603758] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics are commensal or nonpathogenic microbes that confer beneficial effects on the host through several mechanisms such as competitive exclusion, antibacterial effects, and modulation of immune responses. Some probiotics have been found to regulate immune responses via immune regulatory mechanisms. T regulatory (Treg) cells, T helper cell balances, dendritic cells, macrophages, B cells, and natural killer (NK) cells can be considered as the most determinant dysregulated mediators in immunomodulatory status. Recently, fecal microbiota transplantation (FMT) has been defined as the transfer of distal gut microbial communities from a healthy individual to a patient's intestinal tract to cure some immune disorders (mainly inflammatory bowel diseases). The aim of this review was followed through the recent literature survey on immunomodulatory effects and mechanisms of probiotics and FMT and also efficacy and safety of probiotics and FMT in clinical trials and applications.
Collapse
|
14
|
Fernández-Tomé S, Montalban-Arques A, Díaz-Guerra A, Galvan-Roman JM, Marin AC, Mora-Gutiérrez I, Ortega Moreno L, Santander C, Sánchez B, Chaparro M, Gisbert JP, Bernardo D. Peptides encrypted in the human intestinal microbial-exoproteome as novel biomarkers and immunomodulatory compounds in the gastrointestinal tract. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Cambeiro-Pérez N, Hidalgo-Cantabrana C, Moro-García MA, Alonso-Arias R, Simal-Gándara J, Sánchez B, Martínez-Carballo E. A Metabolomics Approach Reveals Immunomodulatory Effects of Proteinaceous Molecules Derived From Gut Bacteria Over Human Peripheral Blood Mononuclear Cells. Front Microbiol 2018; 9:2701. [PMID: 30524384 PMCID: PMC6262353 DOI: 10.3389/fmicb.2018.02701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/23/2018] [Indexed: 01/24/2023] Open
Abstract
There are strong evidences that probiotics influence the immune status of the host, in a strain-specific manner, acting in the gastrointestinal tract. On the hypothesis that certain extracellular proteins and peptides from gut bacteria may mediate part of this immunomodulation and assuming they are able to diffuse through the mucus layer and interact with immune cells we have developed this work. Our study attempts to understand the immunomodulatory mechanisms of (i) Pext, the extracellular protein fraction of Lactobacillus acidophilus DSM20079T, (ii) HM14, a peptide encrypted in an extracellular glycoside hydrolase from Bifidobacterium longum NCIMB 8809 and (iii) Escherichia coli O111:B4 lipopolysaccharide (LPS), a well-known pro-inflammatory molecule, over human peripheral blood mononuclear cells (PBMCs). An untargeted LC-ESI-QTOF-MS metabolomics approach was applied to reveal intracellular changes in treated-PBMCs isolated from healthy donors. Differences in NADH arrest, NAD+ concentration reduction, as well as increases in palmitic acid and methanephrin were observed in HM14 and Pext treated-cells compared to those stimulated with LPS. This would support an anti-inflammatory molecular mechanism of action of such proteinaceous molecules. Moreover, this methodology has confirms the importance of metabolomics approaches to better understanding immune cell responses to gut bacterial-derived molecules.
Collapse
Affiliation(s)
- Noelia Cambeiro-Pérez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science, University of Vigo, Ourense, Spain
| | - Claudio Hidalgo-Cantabrana
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain.,Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marco A Moro-García
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain.,Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science, University of Vigo, Ourense, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain
| | - Elena Martínez-Carballo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science, University of Vigo, Ourense, Spain
| |
Collapse
|
16
|
Whole fractions from probiotic bacteria induce in vitro Th17 responses in human peripheral blood mononuclear cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
17
|
Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Molecular Communication with the Immune System. Front Microbiol 2017; 8:2345. [PMID: 29255450 PMCID: PMC5722804 DOI: 10.3389/fmicb.2017.02345] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022] Open
Abstract
Bifidobacterium represents a genus within the phylum Actinobacteria which is one of the major phyla in the healthy intestinal tract of humans. Bifidobacterium is one of the most abundant genera in adults, but its predominance is even more pronounced in infants, especially during lactation, when they can constitute the majority of the total bacterial population. They are one of the pioneering colonizers of the early gut microbiota, and they are known to play important roles in the metabolism of dietary components, otherwise indigestible in the upper parts of the intestine, and in the maturation of the immune system. Bifidobacteria have been shown to interact with human immune cells and to modulate specific pathways, involving innate and adaptive immune processes. In this mini-review, we provide an overview of the current knowledge on the immunomodulatory properties of bifidobacteria and the mechanisms and molecular players underlying these processes, focusing on the corresponding implications for human health. We deal with in vitro models suitable for studying strain-specific immunomodulatory activities. These include peripheral blood mononuclear cells and T cell-mediated immune responses, both effector and regulatory cell responses, as well as the modulation of the phenotype of dendritic cells, among others. Furthermore, preclinical studies, mainly germ-free, gnotobiotic, and conventional murine models, and human clinical trials, are also discussed. Finally, we highlight evidence supporting the immunomodulatory effects of bifidobacterial molecules (proteins and peptides, exopolysaccharides, metabolites, and DNA), as well as the role of bifidobacterial metabolism in maintaining immune homeostasis through cross-feeding mechanisms.
Collapse
Affiliation(s)
- Lorena Ruiz
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Susana Delgado
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Borja Sánchez
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Abelardo Margolles
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| |
Collapse
|