1
|
Zhu S, Wang X, Zhao W, Zhang Y, Song D, Cheng H, Zhang XH. Vertical dynamics of free-living and particle-associated vibrio communities in the eastern tropical Indian Ocean. Front Microbiol 2023; 14:1285670. [PMID: 37928659 PMCID: PMC10620696 DOI: 10.3389/fmicb.2023.1285670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023] Open
Abstract
Members of the family Vibrionaceae (vibrios) are widely distributed in estuarine, offshore, and marginal seas and perform an important ecological role in the marine organic carbon cycle. Nevertheless, there is little knowledge about whether vibrios play ecological roles in the oligotrophic pelagic area, which occupies a larger water volume. In this study, we investigated the abundance, diversity, and composition of free-living and particle-associated vibrios and their relationships with environmental factors along the water depth in the eastern tropical Indian Ocean (ETIO). The abundance of vibrios in free-living fractions was significantly higher than that of particle-associated fractions on the surface. Still, both were similar at the bottom, indicating that vibrios may shift from free-living lifestyles on the surface to mixed lifestyles at the bottom. Vibrio-specific 16S rRNA gene amplicon sequencing revealed that Paraphotobacterium marinum and Vibrio rotiferianus were dominant species in the water column, and Vibrio parahaemolyticus (a clinically important pathogen) was recorded in 102 samples of 111 seawater samples in 10 sites, which showed significant difference from the marginal seas. The community composition also shifted, corresponding to different depths in the water column. Paraphotobacterium marinum decreased with depth, and V. rotiferianus OTU1528 was mainly distributed in deeper water, which significantly correlated with the alteration of environmental factors (e.g., temperature, salinity, and dissolved oxygen). In addition to temperature and salinity, dissolved oxygen (DO) was an important factor that affected the composition and abundance of Vibrio communities in the ETIO. Our study revealed the vertical dynamics and preferential lifestyles of vibrios in the ETIO, helping to fill a knowledge gap on their ecological distribution in oligotrophic pelagic areas and fully understanding the response of vibrios in a global warming environment.
Collapse
Affiliation(s)
- Shaodong Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Wenbin Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yulin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Derui Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Haojin Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Li J, Tang C, Zhang M, Fan C, Guo D, An Q, Wang G, Xu H, Li Y, Zhang W, Chen X, Zhao R. Exploring the Cr(VI) removal mechanism of Sporosarcina saromensis M52 from a genomic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112767. [PMID: 34507039 DOI: 10.1016/j.ecoenv.2021.112767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Serious hexavalent chromium [Cr(VI)] pollution has continuously threatened ecological security and public health. Microorganism-assisted remediation technology has strong potential in the treatment of environmental Cr(VI) pollution due to its advantages of high efficiency, low cost, and low secondary pollution. Sporosarcina saromensis M52, a strain with strong Cr(VI) removal ability, isolated from coastal intertidal zone was used in this study. Scanning electron microscopy coupled with energy dispersive X-ray analysis indicated M52 was relatively stable under Cr(VI) stress and trace amount of Cr deposited on the cell surface. X-ray photoelectron spectroscopy and X-ray diffraction analyses exhibited M52 could reduce Cr(VI) into Cr(III). Fourier transform infrared spectroscopy showed the bacterial surface was mainly consisted of polysaccharides, phosphate groups, carboxyl groups, amide II (NH/CN) groups, alkyl groups, and hydroxyl groups, while functional groups involving in Cr(VI) bio-reduction were not detected. According to these characterization analyses, the removal of Cr(VI) was primarily depended on bio-reduction, instead of bio-adsorption by M52. Genome analyses further indicated the probable mechanisms of bio-reduction, including the active efflux of Cr(VI) by chromate transporter ChrA, enzymatic redox reactions mediated by reductases, DNA-repaired proteases ability to minimize the ROS damage, and the formation of specific cell components to minimize the biofilm injuries caused by Cr(VI). These studies provided a theoretical basis which was useful for Cr(VI) remediation, especially in terms of increasing its effectiveness. THE MAIN FINDING OF THE WORK: M52 realized the bioremediation of Cr(VI) majorly through bio-reduction, including Cr(VI) efflux, chromate reduction, DNA repair, and the formation of specific cell components, instead of bio-adsorption.
Collapse
Affiliation(s)
- Jiayao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Chen Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Min Zhang
- Department of Environmental and Occupational Health, Huzhou Center for Disease Control and Prevention, Huzhou 313000, Zhejiang, PR China
| | - Chun Fan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Dongbei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Qiuying An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Guangshun Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Hao Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Yi Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Wei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xiaoxuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Ran Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
3
|
Plaza N, Pérez-Reytor D, Ramírez-Araya S, Pavón A, Corsini G, Loyola DE, Jaña V, Pavéz L, Navarrete P, Bastías R, Castillo D, García K. Conservation of Small Regulatory RNAs in Vibrio parahaemolyticus: Possible role of RNA-OUT Encoded by the Pathogenicity Island (VPaI-7) of Pandemic Strains. Int J Mol Sci 2019; 20:ijms20112827. [PMID: 31185635 PMCID: PMC6601013 DOI: 10.3390/ijms20112827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
Small regulatory RNAs (sRNAs) are molecules that play an important role in the regulation of gene expression. sRNAs in bacteria can affect important processes, such as metabolism and virulence. Previous studies showed a significant role of sRNAs in the Vibrio species, but knowledge about Vibrio parahaemolyticus is limited. Here, we examined the conservation of sRNAs between V. parahaemolyticus and other human Vibrio species, in addition to investigating the conservation between V. parahaemolyticus strains differing in pandemic origin. Our results showed that only 7% of sRNAs were conserved between V. parahaemolyticus and other species, but 88% of sRNAs were highly conserved within species. Nonetheless, two sRNAs coding to RNA-OUT, a component of the Tn10/IS10 system, were exclusively present in pandemic strains. Subsequent analysis showed that both RNA-OUT were located in pathogenicity island-7 and would interact with transposase VPA1379, according to the model of pairing of IS10-encoded antisense RNAs. According to the location of RNA-OUT/VPA1379, we also investigated if they were expressed during infection. We observed that the transcriptional level of VPA1379 was significantly increased, while RNA-OUT was decreased at three hours post-infection. We suggest that IS10 transcription increases in pandemic strains during infection, probably to favor IS10 transposition and improve their fitness when they are facing adverse conditions.
Collapse
Affiliation(s)
- Nicolás Plaza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Sebastián Ramírez-Araya
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
- Departamento Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8320000, Chile.
| | - Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Gino Corsini
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - David E Loyola
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Víctor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Sede Providencia, Santiago 8320000, Chile.
| | - Leonardo Pavéz
- Instituto de Ciencias Naturales, Universidad de Las Américas, Santiago 8320000, Chile.
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago 8320000, Chile.
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Millenium nucleus in the Biology of Intestinal Microbiota, INTA, Universidad de Chile, Santiago 8320000, Chile.
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, 1353 Helsingør, Denmark.
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| |
Collapse
|