1
|
Vakili S, Haeili M, Feizi A, Moghaddasi K, Omrani M, Ghodousi A, Cirillo DM. Whole-genome sequencing-based characterization of Salmonella enterica Serovar Enteritidis and Kentucky isolated from laying hens in northwest of Iran, 2022-2023. Gut Pathog 2025; 17:2. [PMID: 39819347 PMCID: PMC11737214 DOI: 10.1186/s13099-025-00679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The transmission of Salmonella spp. to human through the consumption of contaminated food products of animal origin, mainly poultry is a significant global public health concern. The emerging multidrug resistant (MDR) clones of non-typhoidal Salmonella (NTS) serovars, have spread rapidly worldwide both in humans and in the food chain. In this study NTS strains were isolated from diseased laying hens in Iran and were further studied by whole-genome sequencing (WGS) to investigate the prevalent serovars, multilocus sequence types, antimicrobial resistance and virulence genes. RESULTS Out of eight isolated Salmonella spp. six were identified as S. Enteritidis serovar ST11 (n = 5) or ST5824 (n = 1), and two isolates were recognized as S. Kentucky serotype ST198 lineages. The aminoglycoside resistance gene aac(6')-Iaa was the most frequently detected gene being present in all serovars, but it did not confer phenotypic resistance to corresponding agents (tobramycin and amikacin). All S. Enteritidis isolates carried a single GyrA D87N/Y substitution. Other identified antimicrobial resistance genes (ARGs) including tetA, floR, sul1, dfrA1, aph(3')-Ia and double gyrA and parC mutations conferring high-level ciprofloxacin resistance (CIPR) (MIC ≥ 16mg/L) were only found in S. Kentucky isolates. The comparison of phenotypic and genotypic antimicrobial resistance (AMR) profiles revealed inconsistent results for some antibiotics. A total of 11 different Salmonella Pathogenicity Islands (SPIs) including SPIs-1, to 5, 9, 10, 13, 14, C63PI, CS54 and several virulence genes related to type III secretion system, adhesins, iron and magnesium uptake, serum and antimicrobial peptide resistance were detected among the isolates. CONCLUSIONS Our study reports emergence of a highly MDR- CIPR S. Kentucky ST198 clone form poultry associated sources in Iran. The presence of numerous virulence determinants, SPIs and ARGs in the examined NTS isolates poses a significant risk for food safety. The inconsistencies between the genotypic and phenotypic AMR profiles indicate that WGS data alone may not be always sufficient for guiding therapeutic strategies.
Collapse
Affiliation(s)
- Shirin Vakili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Adel Feizi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | | | - Maryam Omrani
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arash Ghodousi
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy.
| | | |
Collapse
|
2
|
Fatima A, Saleem M, Nawaz S, Khalid L, Riaz S, Sajid I. Prevalence and antibiotics resistance status of Salmonella in raw meat consumed in various areas of Lahore, Pakistan. Sci Rep 2023; 13:22205. [PMID: 38097737 PMCID: PMC10721833 DOI: 10.1038/s41598-023-49487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
This study reports the prevalence and antibiotics resistance status of Salmonella detected in raw meat from Lahore, Pakistan. Overall, N = 111 meat samples, were collected from local markets. Salmonella was recovered from 57 (51.35%) samples, including 45.83% of poultry, 60% of buffalo, 64.28% of cow, and 60% of goat meat samples. The predominant Salmonella strains were Salmonella enterica serovars; Typhimurium (45.4%), Typhi (27.2%), and Enteritidis (18.1%), identified by VITEK system and 16S rRNA gene sequencing. The isolates exhibited high resistance to Erythromycin (100%), Cefepime (98.24%), Colistin (94.73%), Azithromycin (92.98%), Tetracycline (87.71%), Polymyxin B (84.21%), Ciprofloxacin (84.21%), Trimethoprim-Sulfamethoxazole (80.70%), Nalidixic Acid (80.70%), Kanamycin (78.94%), Chloramphenicol (77.19%), Streptomycin (71.92%) and Ampicillin (64.91%). While the isolates exhibited more susceptibility to Meropenem (75.43%) and Amikacin (73.68%). N = 8 strains were designated as Multidrug Resistant (MDR) and N = 3 as Extensively Drug-Resistant (XDR) Salmonella. The PCR-based detection of resistance genes revealed the presence of blaTEM-1 gene (100%), catA1 gene (64%), and gyrA gene (18%). The whole genome sequencing (WGS) of two selected strains and subsequent downstream analysis confirmed the strains as MDR and XDR Salmonella enterica serovar Typhi. The study showed that raw meat consumed in Lahore carries a significantly high number of drug-resistant Salmonella.
Collapse
Affiliation(s)
- Aiman Fatima
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Maira Saleem
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Shahid Nawaz
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Linta Khalid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Saba Riaz
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Imran Sajid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
3
|
An R, Qi Y, Zhang XX, Ma L. Xenogenetic evolutionary of integrons promotes the environmental pollution of antibiotic resistance genes - Challenges, progress and prospects. WATER RESEARCH 2023; 231:119629. [PMID: 36689882 DOI: 10.1016/j.watres.2023.119629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Environmental pollution of antibiotic resistance genes (ARGs) has been a great public concern. Integrons, as mobile genetic elements, with versatile gene acquisition systems facilitate the horizontal gene transfer (HGT) and pollution disseminations of ARGs. However, little is understood about the characteristics of ARGs mediated by integrons, which hampers our monitoring and control of the mobile antimicrobial resistance risks. To address these issues, we reviewed 3,322 publications concerning detection methods and pipeline, ARG diversity and evolutionary progress, environmental and geographical distribution, bacterial hosts, gene cassettes arrangements, and based on which to identify ARGs with high risk levels mediated by integrons. Diverse ARGs of 516 subtypes attributed to 12 types were capable of being carried by integrons, with 62 core ARG subtypes prevalent in pollution source, natural and human-related environments. Hosts of ARG-carrying integrons reached 271 bacterial species, most frequently carried by opportunistic pathogens Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Moreover, the observed emergence of ARGs together with their multiple arrangements indicated the accumulation of ARGs mediated by integrons, and thus pose increasing HGT risks under modern selective agents. With the concerns of public health, we urgently call for a better monitoring and control of these high-risk ARGs. Our identified Risk Rank I ARGs (aacA7, blaOXA10, catB3, catB8, dfrA5) with high mobility, reviewed key trends and noteworthy advancements, and proposed future directions could be reference and guidance for standard formulation.
Collapse
Affiliation(s)
- Ran An
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yuting Qi
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
4
|
Miao S, Liu LI, Fu Z. Prevalence of Salmonella in Chinese Food Commodities: A Meta-Analysis. J Food Prot 2022; 85:859-870. [PMID: 34818424 DOI: 10.4315/jfp-21-304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The objective of the present study was to analyze the prevalence of Salmonella in multiple food commodities in the People's Republic of China by performing a meta-analysis. Accordingly, we screened studies that examined the prevalence of Salmonella in PubMed, Embase, and Web of Science databases. Methodological quality assessment and heterogeneity analyses were performed for included studies. The prevalence rate with the 95% confidence interval (CI) was selected as the effect size. Subgroup analyses for each food type were conducted and then stratified by regions, food chain processing points, and seasons. In total, 49 studies were included in the meta-analysis, among them, 8 (16.3%) studies were deemed "high risk," 13 (26.5%) studies were "unclear risk," and 28 (57.2%) studies were "low risk." The overall prevalence rate of Salmonella was 20.0% (95% CI: 15.9 to 24.4). The prevalence rate of Salmonella in raw meat products was 23.6% (95% CI: 19.8 to 27.6), which was higher than that in aquatic products, 13.7% (95% CI: 3.1 to 29.9), milk products, 0.9% (95% CI: 0.0 to 3.9), frozen convenience foods, 6.5% (95% CI: 4.4 to 8.9), ready-to-eat foods, 2.0% (95% CI: 1.1 to 3.2), vegetables and fruits, 0.9% (95% CI: 0.0 to 5.2), and shell eggs, 4.2% (95% CI: 3.0 to 5.7). Subgroup analyses revealed that prevalence rates of Salmonella in raw meat products from abattoirs, 26.3% (95% CI: 17.4 to 36.3) and retail stores, 30.0% (95% CI: 24.6 to 35.8) were higher than those determined from farms, 10.2% (95% CI: 7.0 to 13.9); P < 0.05); however, no significant difference was observed in the prevalence of Salmonella stratified by different geographical regions or seasons (P > 0.05). On the basis of these findings, high levels of Salmonella contamination could be detected in raw meat products in China, and the prevalence rate of Salmonella in raw meat products from abattoirs and retail stores was high. HIGHLIGHTS
Collapse
Affiliation(s)
- Song Miao
- Department of Inspection, Shizhong District, Jinan, Shandong 250002, People's Republic of China
| | - L I Liu
- Department of Clinical Medicine, Shizhong District, Jinan, Shandong 250002, People's Republic of China
| | - Zheng Fu
- Department of Pharmacy, Shandong Medical College, Shizhong District, Jinan, Shandong 250002, People's Republic of China
| |
Collapse
|
5
|
Pavelquesi SLS, de Oliveira Ferreira ACA, Rodrigues ARM, de Souza Silva CM, Orsi DC, da Silva ICR. Presence of Tetracycline and Sulfonamide Resistance Genes in Salmonella spp.: Literature Review. Antibiotics (Basel) 2021; 10:antibiotics10111314. [PMID: 34827252 PMCID: PMC8615168 DOI: 10.3390/antibiotics10111314] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Tetracyclines and sulfonamides are broad-spectrum antibacterial agents which have been used to treat bacterial infections for over half a century. The widespread use of tetracyclines and sulfonamides led to the emergence of resistance in a diverse group of bacteria. This resistance can be studied by searching for resistance genes present in the bacteria responsible for different resistance mechanisms. Salmonella is one of the leading bacteria causing foodborne diseases worldwide, and its resistance to tetracyclines and sulfonamides has been widely reported. The literature review searched the Virtual Health Library for articles with specific data in the studied samples: the resistance genes found, the primers used in PCR, and the thermocycler conditions. The results revealed that Salmonella presented high rates of resistance to tetracycline and sulfonamide, and the most frequent samples used to isolate Salmonella were poultry and pork. The tetracycline resistance genes most frequently detected from Salmonella spp. were tetA followed by tetB. The gene sul1 followed by sul2 were the most frequently sulfonamide resistance genes present in Salmonella. These genes are associated with plasmids, transposons, or both, and are often conjugative, highlighting the transference potential of these genes to other bacteria, environments, animals, and humans.
Collapse
|
6
|
Sohail MN, Rathnamma D, Priya SC, Isloor S, Naryanaswamy HD, Ruban SW, Veeregowda BM. Salmonella from Farm to Table: Isolation, Characterization, and Antimicrobial Resistance of Salmonella from Commercial Broiler Supply Chain and Its Environment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3987111. [PMID: 34660787 PMCID: PMC8514274 DOI: 10.1155/2021/3987111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance (AMR) in poultry production chain is one of the major food safety concerns due to indiscriminate usage of antibiotics and the presence of pathogens such as Salmonella which causes infections in various stages of production. In the present study, 182 samples were collected from commercial broiler supply chain, viz., three hatcheries (n = 29), three commercial broiler farms (CBF; n = 99), and three retail meat shops (RMS; n = 54), and used for isolation and identification of Salmonella using three different selective agar media and a selective enrichment medium followed by PCR confirmation targeting the hilA gene. The overall prevalence of Salmonella was 47/182 (25.82%), and a significantly higher (P < 0.05) prevalence was observed in retail meat shops (46.29%), CBF (19.19%), and hatcheries (10.34%). Comparison of three agar media for isolation of Salmonella revealed that all the media were equally selective. However, PCR amplification of hilA gene fragment was significantly higher (P < 0.01) in selective enrichment culture tetrathionate brilliant green bile broth (TTB) as compared to all solid (agar-based) media. Susceptibility pattern against most frequently used antibiotics revealed that 100% of the isolates were resistant to at least one antibiotic. High resistance was observed for doxycycline (94.34%), followed by cefpodoxime (84.91%), ciprofloxacin (72.64%), gentamicin (65.09%), enrofloxacin (61.32%), colistin sulphate (40.42%), amikacin (34.91%), ampicillin (33.96%), neomycin (33.02), cefotaxime (30.19%), ceftazidime (29.25%), trimethoprim-sulfamethoxazole (23.58%), amoxicillin+clavulanic acid (21.70%), and chloramphenicol (12.26%); 16.98% of the isolates were ex-tended spectrum β-lactamase (ESBL) producers, and 76.41% were multidrug resistant (MDR). MDR Salmonella were significantly higher (P < 0.01) in RMS (91.66%) followed by CBF (82.75%), whereas no MDR isolates were present in the isolates from hatcheries. The results indicated a higher prevalence of Salmonella and AMR for commonly used antibiotics in the complete broiler supply chain, especially RMS and CBF. Also, this study idicated that TTB enrichment followed by PCR and colony PCR was found to be rapid, specific and time-saving method.
Collapse
Affiliation(s)
- M. Nasim Sohail
- Department of Para-Clinic, Faculty of Veterinary Sciences, Afghanistan National Agricultural Sciences and Technology University (ANASTU), Kandahar-0093, Afghanistan
- -
Department of Veterinary Microbiology, Veterinary College, Hebbal, 560024, Bengaluru, India
| | - D. Rathnamma
- -
Department of Veterinary Microbiology, Veterinary College, Hebbal, 560024, Bengaluru, India
| | - S. Chandra Priya
- -
Department of Veterinary Microbiology, Veterinary College, Hebbal, 560024, Bengaluru, India
| | - S. Isloor
- -
Department of Veterinary Microbiology, Veterinary College, Hebbal, 560024, Bengaluru, India
| | - H. D. Naryanaswamy
- -
Karnataka Veterinary Animal and Fisheries Sciences University, Nandinagar, 585401, Bidar, India
| | - S. Wilfred Ruban
- Department of Livestock Products and Technology, Veterinary College, Hebbal, Bengaluru 560024, India
| | - B. M. Veeregowda
- -
Department of Veterinary Microbiology, Veterinary College, Hebbal, 560024, Bengaluru, India
| |
Collapse
|
7
|
Ali F, Silvy TN, Hossain TJ, Uddin MK, Uddin MS. Prevalence and antimicrobial resistance phenotypes of Salmonella species recovered at various stages of broiler operations in Hathazari, Bangladesh. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.158-164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Dissemination of multidrug-resistant (MDR) Salmonella through food chains has serious health implications, with higher rates of morbidity and mortality. Broiler meat remains a major reservoir of Salmonella contamination. The lack of proper hygiene in local broiler operations has, therefore, prompted this research into the assessment of Salmonella contamination in local shops and associated antimicrobial resistance (AMR) phenotypes.
Materials and Methods: A total of 55 broiler samples including skin, meat, and swab samples from chopping and dressing sites were included in the study. The samples were collected from broiler shops in Hathazari, Bangladesh, and screened for the presence of Salmonella strains using culture-based methods. The isolates were biochemically characterized and further tested for AMR to eight common antibiotics using the disk diffusion technique.
Results: Salmonella contaminations were identified in 29% (16/55) of the broiler samples. Swab samples collected from the chopping sites appeared to be contaminated in higher proportions (33%) than those collected from the dressing areas (25%). On the other hand, the skin samples (50%) were detected with a higher percentage of contamination than the meat samples (25%). All Salmonella isolates showed resistance toward at least one of the eight antibiotics used. Although none of the isolates was resistant to all antibiotics, 18.75% showed resistance to a maximum of seven antibiotics. Resistance to nalidixic acid was most prevalent (87.5%), followed by sulfamethoxazole-trimethoprim (81.25%), erythromycin (81.25%), tetracycline (75%), streptomycin (56.25%), ampicillin-clavulanic acid (50%), chloramphenicol (43.75%), and cefotaxime (18.75%). The resistance patterns of the isolates were found to be highly diverse. The most frequently observed pattern was the following: Ampicillin-clavulanic acid-sulfamethoxazole-trimethoprim-nalidixic acid-tetracycline-chloramphenicol-streptomycin-erythromycin.
Conclusion: The relatively high prevalence of MDR strains in the samples underlies an urgent need for surveillance and control measures concerning hygiene and antibiotic use in local broiler operations.
Collapse
Affiliation(s)
- Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| | - Tazriyan Noor Silvy
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| | - Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Md. Kamal Uddin
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| | | |
Collapse
|
8
|
Qiu YF, Nambiar RB, Xu XB, Weng ST, Pan H, Zheng KC, Yue M. Global Genomic Characterization of Salmonella enterica Serovar Telelkebir. Front Microbiol 2021; 12:704152. [PMID: 34394052 PMCID: PMC8358458 DOI: 10.3389/fmicb.2021.704152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is a common cause for self-limiting gastroenteritis, representing a public health concern globally. NTS is one of the leading causes of foodborne illnesses in China; however, the invasive infection caused by NTS is largely underappreciated. Here, we reported an NTS invasive infection caused by an infrequently reported serovar Telelkebir (13,23:d:e,n,z15) strain FJ001 in China, which carries antimicrobial-resistant genes [fosA7 and aac(6')-Iaa] and typhoid-toxin genes (cdtB, pltA, and pltB). By conducting the whole genomic sequencing, we also investigated the relatedness of this strain with an additional 120 global contextual Salmonella enterica serovar Telelkebir (S. Telelkebir) isolates, and assessed the antimicrobial-resistant determinants and key virulence factors using the available genomic dataset. Notably, all 121 (100%) of the S. Telelkebir strains possessed the typhoid toxin genes cdtB, pltA, and pltB, and 58.67% (71/121) of S. Telelkebir harbored antimicrobial-resistant gene fosaA7. The study by core genome multilocus sequence typing (cgMLST) and core single-nucleotide polymorphism (SNP)-based phylogenomic analysis demonstrated that the S. Telelkebir isolates from different sources and locations clustered together. This suggests that regular international travels might increase the likelihood of rapid and extensive transmissions of potentially pathogenic bacteria. For the first time, our study revealed the antimicrobial resistance, virulence patterns, and genetic diversity of the serovar S. Telelkebir isolate in humans and similar isolates over the world. The present study also suggests that genomic investigation can facilitate surveillance and could offer added knowledge of a previously unknown threat with the unique combination of virulent and antimicrobial-resistant determinants.
Collapse
Affiliation(s)
- Yu-Feng Qiu
- Department of Bacterialogy, Fujian Provincial Center for Disease Control & Prevention, Fuzhou, China.,Department of Bacterialogy, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Reshma B Nambiar
- Department of Veterinary Medicine & Institute of Preventive Veterinary Science, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xue-Bin Xu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Shun-Tai Weng
- Department of Bacterialogy, Fujian Provincial Center for Disease Control & Prevention, Fuzhou, China.,Department of Bacterialogy, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Hang Pan
- Department of Veterinary Medicine & Institute of Preventive Veterinary Science, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Kui-Cheng Zheng
- Department of Bacterialogy, Fujian Provincial Center for Disease Control & Prevention, Fuzhou, China.,Department of Bacterialogy, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China.,School of Public Health, Fujian Medical University, Fuzhou, China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Science, Zhejiang University College of Animal Sciences, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
9
|
Zhou Y, Li S, Pang Q, Miao Z. Bacillus amyloliquefaciens BLCC1-0238 Can Effectively Improve Laying Performance and Egg Quality Via Enhancing Immunity and Regulating Reproductive Hormones of Laying Hens. Probiotics Antimicrob Proteins 2021; 12:246-252. [PMID: 30834486 DOI: 10.1007/s12602-019-9524-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we sought to evaluate the effects of dietary Bacillus amyloliquefaciens (B. amyloliquefaciens) BLCC1-0238 supplementation on laying performance, egg quality, antioxidant enzyme activities, reproductive hormone, and immunity of laying hens. A total of 240 Hy-Line Brown laying hens (28 weeks old) were randomly divided into four groups, and three replicates per group (n = 20 per replicate). The control group was fed a standard basal diet, and the three treatment groups were provided the basal diet supplemented with either 0.01%, 0.03%, or 0.06% B. amyloliquefaciens BLCC1-0238 (2 × 1010 CFU/g), respectively. Hens were allowed 2 weeks to acclimate prior to initiation of the 8-week experiment. It was observed that dietary supplementation with 0.01% or 0.03% B. amyloliquefaciens BLCC1-0238 significantly increased egg production and egg mass. However, no significant differences in feed intake, egg weight, and feed conversion ratio among the four groups were observed. Different levels of B. amyloliquefaciens BLCC1-0238 supplementation also significantly increased egg shell strength and thickness. With respect to the levels of reproductive hormones in the hens, B. amyloliquefaciens BLCC1-0238 supplementation significantly reduced serum adrenal cortical hormone (ACTH) levels, while increasing estradiol (E2) and follicle-stimulating hormone (FSH) secretion in the treatment groups compared to the control group. Relative to the control group, supplementation with 0.03% and 0.06% B. amyloliquefaciens BLCC1-0238 was observed to significantly increase serum glutathione S-transferase (GST) concentration, and supplementation significantly reduced serum IL-1 and IL-6 levels, whereas IL-4 levels increased for all concentrations tested. In conclusion, supplementation of a basal chicken diet with B. amyloliquefaciens BLCC1-0238 can improve laying performance and egg quality through the reduction of stress responses, up-regulation of growth hormones, and supporting immunity in laying hens.
Collapse
Affiliation(s)
- Yufa Zhou
- College of Animal Science and Technology, Shanxi Agricultural University, Mingxian South Road 1, Taigu, 030801, China
| | - Song Li
- School of Basic Medicine, Taishan Medical University, Tai'an, 271000, China
| | - Quanhai Pang
- College of Animal Science and Technology, Shanxi Agricultural University, Mingxian South Road 1, Taigu, 030801, China.
| | - Zengmin Miao
- School of Life Sciences, Taishan Medical University, Changcheng Road 619, Tai'an, 271018, China.
| |
Collapse
|
10
|
Chen Z, Bai J, Zhang X, Wang S, Chen K, Lin Q, Xu C, Qu X, Zhang H, Liao M, Zhang J. Highly prevalent multidrug resistance and QRDR mutations in Salmonella isolated from chicken, pork and duck meat in Southern China, 2018-2019. Int J Food Microbiol 2021; 340:109055. [PMID: 33485100 DOI: 10.1016/j.ijfoodmicro.2021.109055] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
This study was undertaken to investigate the prevalence, serotype distribution and antimicrobial resistance in Salmonella isolated from retail meat in Southern China, and to characterize the major mechanisms that mediate the ciprofloxacin resistance of isolates. High levels of Salmonella contamination were detected in pork (67.0%), duck (50.5%) and chicken (46.2%). Thirty different serotypes were identified among 500 detected Salmonella isolates, as well as significant differences in serotypes between different retail meat samples. Notably, 405 (80.1%) isolates exhibited multidrug resistance (MDR). Meanwhile, we also found that 74 (14.8%) Salmonella isolates were resistant to ciprofloxacin and the major mechanisms underlying this resistance were investigated. The commonest mutations in gyrA S83F (40.5%) and D87N (35.1%), and in parC was T57S (71.6%) and S80I (35.1%). Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) analysis revealed that the S. Kentucky isolates that were resistant to ciprofloxacin mostly belonged to ST198 (21/23, 91.3%) and PFGE revealed the presence of various genotypes. This study identified a diversity of Salmonella serotypes and a high prevalence of multidrug resistance (MDR) among Salmonella isolated from retail meat in Southern China, which indicates that foodborne Salmonella potentially constitutes a potential food safety risk.
Collapse
Affiliation(s)
- Zhengquan Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jie Bai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Xibin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, PR China; New Hope Liuhe Co., Ltd., Beijing 100102, PR China
| | - Shaojun Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaoyun Qu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Hongxia Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
11
|
Nationwide surveillance on serotype distribution and antimicrobial resistance profiles of non-typhoidal Salmonella serovars isolated from food-producing animals in South Korea. Int J Food Microbiol 2020; 335:108893. [PMID: 33007603 DOI: 10.1016/j.ijfoodmicro.2020.108893] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023]
Abstract
Food-producing animals are considered a leading source of human Salmonella infections in Korea. However, there is a lack of comprehensive and up-to-date data regarding the diversity and resistance profiles of Salmonella serotypes in these animals. Therefore, this study aimed to determine the distribution and antimicrobial resistance profiles of Salmonella serotypes isolated from cattle, pigs, and chickens in Korea between 2010 and 2018. A total of 3018 Salmonella isolates were obtained from 16 laboratories/centers participating in the Korean Veterinary Antimicrobial Resistance Monitoring System. Salmonella serotypes were identified from the following isolates: 179 cattle (17 serotypes), 959 pig (45 serotypes), and 1880 chicken (64 serotypes). The most frequent serotypes in cattle (Typhimurium, Salmonella 4,[5],12:i:-, and Schwarzengrund), pigs (Typhimurium, Rissen, and S. 4,[5],12:i:-), and chickens (Enteritidis, Albany, Virchow, and Montevideo) accounted for more than 50% of the total serotypes in the respective animal species. To the best of our knowledge, Salmonella 4,[5],12:i:- has not been identified in cattle in Korea to date. More than 80% of the isolates demonstrated resistance to at least one antimicrobial agent. Multidrug-resistance was found in almost half of the serotypes; the highest proportion in cattle (59.2%), followed by pigs (53.4%), and chickens (45.7%). Significant proportions of the serotypes were resistant to ampicillin, streptomycin, and tetracycline. Ceftiofur and ciprofloxacin resistance rates were the highest in Salmonella isolated from chickens (17.1% and 4.1%, respectively) and cattle (10.1% and 3.9%, respectively) compared to that in pigs. Among the frequent serotypes, Albany demonstrated the highest resistance rate (>90%) to five different antimicrobials. Alarmingly, some Salmonella serotypes that are frequently associated with human infections demonstrated a trend of increasing resistance to critically important antibiotics, including 3rd generation cephalosporins and quinolones. Collectively, the presence of antibiotic-resistant Salmonella in food-producing animals poses a potential risk to public health.
Collapse
|
12
|
Chen Z, Bai J, Wang S, Zhang X, Zhan Z, Shen H, Zhang H, Wen J, Gao Y, Liao M, Zhang J. Prevalence, Antimicrobial Resistance, Virulence Genes and Genetic Diversity of Salmonella Isolated from Retail Duck Meat in Southern China. Microorganisms 2020; 8:E444. [PMID: 32245148 PMCID: PMC7143943 DOI: 10.3390/microorganisms8030444] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 11/30/2022] Open
Abstract
Salmonella is an important cause of foodborne diseases. This study was undertaken to investigate the prevalence, serotype distribution, antimicrobial resistance, virulence genes, and genetic diversity of Salmonella isolates recovered from fresh duck meat obtained from retail markets in Southern China. In total, 365 samples of fresh duck meat were collected from retail markets in six different cities of Guangdong Province between May 2017 and April 2019. High levels of Salmonella contamination were detected in duck meat (151/365, 41.4%). Twenty-six different Salmonella serotypes were identified: S. Corvallis (n = 25, 16.6%), S. Kentucky (n = 22, 14.6%) and S. Agona (n = 20, 13.3%) were the most prevalent serotypes. All isolates were resistant to at least one antibiotic and 133 (88.1%) isolates exhibited multidrug resistance (MDR). Most (86.1%) Salmonella isolates carried seven classes of virulence-associated genes. This study showed the diversity of Salmonella serotypes and genotypes and the high prevalence of MDR isolates carrying multiple virulence-associated genes among isolates from duck meat obtained from retail markets in Southern China. Isolates from different districts had similar pulsed-field gel electrophoresis (PFGE) patterns indicating that circulating foodborne Salmonella constitutes a potential public health issue across different districts.
Collapse
Affiliation(s)
- Zhengquan Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Bai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shaojun Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xibin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
- New Hope Liuhe Co., Ltd., Beijing 100102, China
| | - Zeqiang Zhan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Shen
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hongxia Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junping Wen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Gao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Feng Y, Chang YJ, Fang SH, Su LH, Li HC, Yang HP, Yu MJ, Chiu CH. Emergence and Evolution of High-Level Cephalosporin-Resistant Salmonella Goldcoast in Northern Taiwan. Open Forum Infect Dis 2019; 6:ofz447. [PMID: 31858016 PMCID: PMC6916519 DOI: 10.1093/ofid/ofz447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/16/2019] [Indexed: 01/28/2023] Open
Abstract
Background Nontyphoidal Salmonella (NTS) is an important foodborne pathogen worldwide. We investigated a 2018 outbreak of highly antimicrobial-resistant Salmonella enterica serotype Goldcoast in northern Taiwan. Methods We collected 30 clinical isolates and 2 meat isolates from this outbreak in New Taipei and Taoyuan, Taiwan in 2018. The clinical manifestations and the treatment of the patients were reviewed. To trace the source, we examined NTS isolated from food samples collected from the markets in northern Taiwan. All of the isolates along with an additional human isolate from China were sequenced and compared with the sequences of Salmonella Goldcoast reported by other countries. Results The outbreak involved 14 pediatric patients (<5 years old) and 16 adults (36 to 83 years old). Nine patients with invasive or severe disease required carbapenem treatment. The MIC90 of ceftriaxone and ciprofloxacin for the outbreak isolates was >256 μg/mL and 1 μg/mL, respectively, and a conjugative 278-kilobase plasmid harboring blaCTX-M-55 and qnrS1 contributed towards the resistance. Whole-genome sequencing revealed a clonal relationship among the outbreak isolates and the 2 collected from the retail meats. The outbreak clone was phylogenetically close to that of Salmonella Goldcoast reported in the United Kingdom, Poland, and China, whereas similar resistance plasmids were found in China and Cambodia. Conclusions The clinical spectrum of the high-level cephalosporin-resistant Salmonella Goldcoast is similar to that of other NTS serotypes, but severe cases required carbapenem treatment. The study confirmed the emergence of a highly antimicrobial-resistant clone of Salmonella Goldcoast, highlighting the importance of surveillance for food safety.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yi-Jung Chang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Szu-Hsuan Fang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Lin-Hui Su
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsin-Chieh Li
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsin-Ping Yang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Min-Jia Yu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Correspondence: C.-H. Chiu, MD, PhD, Department of Pediatrics, Chang Gung Memorial Hospital, No. 5, Fu-Hsin Street, Kweishan 333, Taoyuan, Taiwan ()
| |
Collapse
|
14
|
Zhou M, Li X, Hou W, Wang H, Paoli GC, Shi X. Incidence and Characterization of Salmonella Isolates From Raw Meat Products Sold at Small Markets in Hubei Province, China. Front Microbiol 2019; 10:2265. [PMID: 31636615 PMCID: PMC6787437 DOI: 10.3389/fmicb.2019.02265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
Salmonella is a leading cause of foodborne disease and is often associated with the consumption of foods of animal origin. In this study, sixty-six Salmonella isolates were obtained from 631 raw meat samples purchased at small retail suppliers in Hubei Province, China. The most prevalent Salmonella serotypes were Thompson (18.2%) and Agona (13.6%). Frequent antimicrobial resistance was observed for the sulfonamides (43.9%), tetracycline (43.9%), and the β-lactams amoxicillin and ampicillin (36.4% for each). Interestingly, a high incidence of resistance to cephazolin was observed in strains of the most common serotype, S. Thompson. Class I integrons were found in 27.3% (18/66) of the isolates and five of these integrons contained different gene cassettes (aacA4C-arr-3-dfr2, dfrA12-aadA21, aadA2, dfrA12-aadA2, dfr17-aadA5). Additional antimicrobial resistance genes, including bla TEM-1, bla CTX-M-65, bla CTX-M-15, qnrB, and qnrS, were also identified among these Salmonella isolates. Results of replicon typing and conjugation experiments revealed that an integron with qnrB and bla CTX-M-15 genes was present on incH12 mobile plasmid in S. Thompson strain. Multilocus sequence typing (MLST) analysis revealed 32 sequence types, indicating that these isolates were phenotypically and genetically diverse, among which ST26 (18.2%) and ST541 (12.1%) were the predominant sequence types. The integrons, along with multiple antimicrobial resistance genes on mobile plasmids, are likely contributors to the dissemination of multidrug resistance in Salmonella.
Collapse
Affiliation(s)
- Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xiaofang Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wenfu Hou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongxun Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - George C Paoli
- Molecular Characterization of Foodborne Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center (USDA-ARS-ERRC), USDA-MOST Joint Research Center for Food Safety, Wyndmoor, PA, United States
| | - Xianming Shi
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, MOST-USDA Joint Research Center for Food Safety, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Haeri A, Ahmadi E. Fecal Colonization of Extended-Spectrum Beta Lactamase-Producing Salmonella spp. in Broilers in Lorestan Province of Iran. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2019. [DOI: 10.15171/ijep.2019.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Poultry is considered as a major source of human contamination with nontyphoidal Salmonella species. Global concern regarding the emergence and dispersion of extended-spectrum beta-lactamase (ESBLs)-producing isolates in broilers has increased during recent years. Objective: This study was proposed to evaluate the prevalence of Salmonella and the associated ESBLs in broilers in Lorestan province of Iran. Materials and Methods: Five hundred fresh fecal samples of broilers were phenotypically screened for Salmonella. The isolates were confirmed molecularly using an invA-based polymerase chain reaction (PCR). Confirmatory combination disk method was applied for phenotypic detection of ESBLs among the isolates, followed by molecular identification of blaCTX-M, blaTEM, and blaSHV genes in 3 single PCR assays among positive isolates. Chi-square test in SPSS software was used for the assessment of statistical relationships. Results: Of the 95 Salmonella isolates detected using routine bacteriological methods, all were confirmed molecularly. They generated the expected 254-bp amplicon. Moreover, 13 isolates were phenotypically recognized as ESBL determinants, among which 9 and 4 harbored blaCTX-M and blaTEM, respectively. No blaSHV and co-existence of the genes were determined. Conclusion: The threat imposed by dissemination of ESBL-producing non-typhoidal Salmonella spp. isolated from broilers was confirmed in the studied region. Continuous monitoring programs, application of biosecurity measures, and prudent prescription of antibiotics are warranted in order to prevent the introduction or dispersion of the ESBL-producing Salmonella.
Collapse
Affiliation(s)
- Ali Haeri
- Graduated from Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Elham Ahmadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
16
|
Zeng YB, Xiong LG, Tan MF, Li HQ, Yan H, Zhang L, Yin DF, Kang ZF, Wei QP, Luo LG. Prevalence and Antimicrobial Resistance of Salmonella in Pork, Chicken, and Duck from Retail Markets of China. Foodborne Pathog Dis 2019; 16:339-345. [PMID: 31013442 DOI: 10.1089/fpd.2018.2510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella is one of the most important foodborne pathogens associated with animal and human diseases. In this study, 672 samples of fresh meat (pork, 347; chicken, 196; and duck, 129) were collected from retail markets in different provinces of China from 2010 to 2014. We identified 10 different serotypes among 80 Salmonella isolates, whereas 12 isolates were nonmotile precluding conventional identification of complete serotype. Among these 92 isolates, Salmonella enterica serovar Derby (n = 21) was the most prevalent serotype, followed by Salmonella Enteritidis (n = 17), Salmonella Typhimurium (n = 15), Salmonella Indiana (n = 9), Salmonella Agona (n = 7), and Salmonella Assinie (n = 5). Antimicrobial resistance testing for 18 antimicrobial agents revealed that all 92 isolates were resistant to at least 1 antimicrobial agent, and 39 different resistance profiles were identified. The highest resistance was to trimethoprim-sulfamethoxazole (n = 87), followed by tetracycline (n = 51), carbenicillin (n = 38), amoxicillin/A.clav (n = 30), and piperacillin (n = 24). Our results demonstrated that meats presented a potential public health risk, thereby underlining the necessity for local regulatory enforcement agencies in China to monitor salmonellosis.
Collapse
Affiliation(s)
- Yan-Bing Zeng
- 1 Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Li-Gen Xiong
- 1 Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Mei-Fang Tan
- 1 Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Hai-Qin Li
- 1 Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Han Yan
- 2 Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Li Zhang
- 2 Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - De-Feng Yin
- 2 Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhao-Feng Kang
- 1 Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Qi-Peng Wei
- 1 Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lin-Guang Luo
- 2 Agricultural Product Quality Safety and Standards Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
17
|
Fei X, Yin K, Yin C, Hu Y, Li J, Zhou Z, Tian Y, Geng S, Chen X, Pan Z, Li Q, Jiao X. Analyses of prevalence and molecular typing reveal the spread of antimicrobial-resistant Salmonella infection across two breeder chicken farms. Poult Sci 2019; 97:4374-4383. [PMID: 30016482 DOI: 10.3382/ps/pey305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/21/2018] [Indexed: 01/22/2023] Open
Abstract
In this study, Salmonella prevalence and antimicrobial resistance were evaluated at various production stages in 2 geographically separated breeder farms (referred to as G and F). Day-old chicks for the breeder flock at farm F were purchased from farm G. A total of 219 Salmonella isolates, all identified as Salmonella enterica subsp. enterica serovar Enteritidis, were recovered from 1,430 samples (sick chicken carcasses and/or dead embryos). The isolation rates at breeder farms G and F were 10.53% (56/532) and 18.15% (163/898), respectively. Resistance to 4-6 antimicrobial agents was the most frequent phenotype during the laying stage at both farms, suggesting that chicks are exposed to higher risk of antimicrobial-resistant Salmonella infection during this stage of the breeding process. Using clustered regularly interspaced short palindromic repeat (CRISPR) typing, 5 CRISPR patterns were identified, out of which one pattern was shared by the 2 farms. In addition, pulsed-field gel electrophoresis (PFGE) typing result indicated that 2 clusters (PF-1 and PF-2) were shared among the 2 breeder farms, suggesting that strains were transmitted from breeder farm G to farm F via the trade of day-old chicks. Our findings suggested that the trade of day-old breeder chicks could be one of the potential Salmonella transmission routes, and antibiotics should be administered with caution during the laying stage.
Collapse
Affiliation(s)
- Xiao Fei
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China
| | - Kequan Yin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China
| | - Chao Yin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China
| | - Yachen Hu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China
| | - Jingwen Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China
| | - Zihao Zhou
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China
| | - Yuqi Tian
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China
| | - Shizhong Geng
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China
| | - Xiang Chen
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 225009, China
| | - Zhiming Pan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 225009, China
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 225009, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, 225009, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 225009, China
| |
Collapse
|
18
|
Zhang L, Fu Y, Xiong Z, Ma Y, Wei Y, Qu X, Zhang H, Zhang J, Liao M. Highly Prevalent Multidrug-Resistant Salmonella From Chicken and Pork Meat at Retail Markets in Guangdong, China. Front Microbiol 2018; 9:2104. [PMID: 30258419 PMCID: PMC6143800 DOI: 10.3389/fmicb.2018.02104] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the prevalence, serotype distribution, and antibiotic resistance, and to characterize the extended spectrum β-lactamases (ESBLs) producing Salmonella isolates from chicken and pork meats from retail markets in Guangdong province, China. A total of 903 retail meat samples (475 chicken and 428 pork meats) were obtained from six cities (Guangzhou, Shenzhen, Heyuan, Shaoguan, Foshan, and Yunfu) of Guangdong province between May 2016 and April 2017. High levels of Salmonella contamination were detected in chicken (302/475, 63.6%) and pork (313/428, 73.1%). Thirty-eight serotypes were identified in 615 detected Salmonella, and the serotypes varied greatly between chicken and pork samples. Agona (55/302, 18.2%), Corvallis (45/302, 14.9%), Kentucky (38/302, 12.6%), Mbandaka (32/302, 10.6%) was the dominant serotypes in chicken samples. However, Typhimurium (78/313, 24.9%), Rissen (67/313, 24.1%), Derby (66/313, 21.1%), and London (48, 15.3%) were the most common in pork samples. High rates of antibiotic resistance were found to sulfisoxazole (468/615, 76.1%), tetracycline (463/615, 75.3%), ampicillin (295/615, 48.0%), and ofloxacin (275/615, 44.7%). Notably, antimicrobial susceptibility tests identified resistance to polymyxin B (12/615, 2.0%) and imipenem (3/615, 0.5%). Multidrug-resistance (MDR) was detected in Salmonella isolated from chicken (245/302, 81.1%) and pork (229/313, 73.2%). The resistance rate of different Salmonella serotypes varied widely. Especially, isolates such as Typhimurium, Agona, Corvallis and Kentucky exhibited highly resistance to antibiotics. The MDR rate of Salmonella isolates from chicken was significantly higher than that from pork isolates (P < 0.05). Twenty-one Salmonella isolates were identified as ESBLs-producing, covering six Salmonella serotypes and displaying different pulse field gel electrophoresis (PFGE) genotypes. BlaOXA-1 was the dominant ESBLs gene (9/21, 42.9%), followed by blaCTX-M-55 (5/21, 23.8%). This study indicated that Salmonella was widespread in chicken and pork from retail markets in Guangdong province and the isolates showed high multidrug-resistance, especially the known multidrug-resistant Salmonella serotypes. Therefore, it is important to focus on Salmonella serotypes and strengthen the long-term monitoring of MDR Salmonella serotypes in animal-derived foods.
Collapse
Affiliation(s)
- Lina Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Fu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiying Xiong
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yeben Ma
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yihuan Wei
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxia Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Zwe YH, Tang VCY, Aung KT, Gutiérrez RA, Ng LC, Yuk HG. Prevalence, sequence types, antibiotic resistance and, gyrA mutations of Salmonella isolated from retail fresh chicken meat in Singapore. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Complete Genome Sequences of Two Salmonella Viruses, VSe11 and VSe102 (Family Myoviridae, Subfamily Ounavirinae), with a Very High Degree of Similarity. GENOME ANNOUNCEMENTS 2018; 6:6/21/e00398-18. [PMID: 29798917 PMCID: PMC5968733 DOI: 10.1128/genomea.00398-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two lytic double-stranded DNA bacteriophages, VSe11 and VSe102, infecting broad-spectrum Salmonella enterica were isolated from the sewage of two different poultry farms. The phage genomes comprise 86,360 bp and 86,365 bp, respectively, with a G+C content of 39.0%, and both contain 129 putative coding sequences.
Collapse
|