1
|
Zhu L, Liang A, Wang R, Shi Y, Li J, Wang R, Wang M, Guo S. Harnessing nitrate over ammonium to sustain soil health during monocropping. FRONTIERS IN PLANT SCIENCE 2023; 14:1190929. [PMID: 37528978 PMCID: PMC10389047 DOI: 10.3389/fpls.2023.1190929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 08/03/2023]
Abstract
Introduction In achieving food security and sustainable agricultural development, improving and maintaining soil health is considered as a key driving factor. The improvement based on different forms of nitrogen fertilization has aroused great public interest in improving and restoring monocropping obstacles for specific soil problems. Methods For this, a short-term cucumber cropping field experiment was conducted in the subtropical region of China under four fertilization treatments: ammonium (AN), nitrate (NN), ammonium with dicyandiamide (AN+DCD), nitrate with dicyandiamide (NN+DCD). In this study, we measured the effects of nitrogen forms addition on plant productivity and soil health in a monocropping system over seven seasons. Results To systematically evaluate soil health, a wide range of soil environmental factors were measured and incorporated into the soil health index (SHI) by entropy method. Compared with ammonium treatment (SHIAN = 0.059, SHIAN+DCD = 0.081), the positive effect of nitrate was mainly reflected in improving soil health (SHINN = 0.097, SHINN+DCD = 0.094), which was positively correlated with the increase in plant productivity of cucumber after seven seasons of monocropping. The most critical factor affecting SHI is soil ammonium nitrogen content, which was negatively correlated with plant productivity. Discussion Nitrate promotes soil health and plant productivity by optimizing soil environmental factors. The study thus emphasized the necessity of nitrate input for the sustenance of soil-crop ecosystems, with the consequent possibility of application of the results in planning monoculture obstacle prevention and management measures.
Collapse
|
2
|
Andrews HM, Krichels AH, Homyak PM, Piper S, Aronson EL, Botthoff J, Greene AC, Jenerette GD. Wetting-induced soil CO 2 emission pulses are driven by interactions among soil temperature, carbon, and nitrogen limitation in the Colorado Desert. GLOBAL CHANGE BIOLOGY 2023; 29:3205-3220. [PMID: 36907979 DOI: 10.1111/gcb.16669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Warming-induced changes in precipitation regimes, coupled with anthropogenically enhanced nitrogen (N) deposition, are likely to increase the prevalence, duration, and magnitude of soil respiration pulses following wetting via interactions among temperature and carbon (C) and N availability. Quantifying the importance of these interactive controls on soil respiration is a key challenge as pulses can be large terrestrial sources of atmospheric carbon dioxide (CO2 ) over comparatively short timescales. Using an automated sensor system, we measured soil CO2 flux dynamics in the Colorado Desert-a system characterized by pronounced transitions from dry-to-wet soil conditions-through a multi-year series of experimental wetting campaigns. Experimental manipulations included combinations of C and N additions across a range of ambient temperatures and across five sites varying in atmospheric N deposition. We found soil CO2 pulses following wetting were highly predictable from peak instantaneous CO2 flux measurements. CO2 pulses consistently increased with temperature, and temperature at time of wetting positively correlated to CO2 pulse magnitude. Experimentally adding N along the N deposition gradient generated contrasting pulse responses: adding N increased CO2 pulses in low N deposition sites, whereas adding N decreased CO2 pulses in high N deposition sites. At a low N deposition site, simultaneous additions of C and N during wetting led to the highest observed soil CO2 fluxes reported globally at 299.5 μmol CO2 m-2 s-1 . Our results suggest that soils have the capacity to emit high amounts of CO2 within small timeframes following infrequent wetting, and pulse sizes reflect a non-linear combination of soil resource and temperature interactions. Importantly, the largest soil CO2 emissions occurred when multiple resources were amended simultaneously in historically resource-limited desert soils, pointing to regions experiencing simultaneous effects of desertification and urbanization as key locations in future global C balance.
Collapse
Affiliation(s)
- Holly M Andrews
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Alexander H Krichels
- Department of Environmental Sciences, University of California, Riverside, California, USA
- Center for Conservation Biology, University of California, Riverside, California, USA
| | - Peter M Homyak
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Stephanie Piper
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Emma L Aronson
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Jon Botthoff
- Center for Conservation Biology, University of California, Riverside, California, USA
| | - Aral C Greene
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - G Darrel Jenerette
- Center for Conservation Biology, University of California, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| |
Collapse
|
3
|
Effects of Mercury Contamination on Microbial Diversity of Different Kinds of Soil. Microorganisms 2022; 10:microorganisms10050977. [PMID: 35630421 PMCID: PMC9144551 DOI: 10.3390/microorganisms10050977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Soil microorganisms promote the recovery of contaminated soil by influencing the cyclic transformation of various substances. In this study, we investigated the impact of mercury pollution on the structure, composition, and main populations of soil microbial communities using a high-throughput sequencing method and observed that mercury pollution significantly influenced the diversity, structure, and distribution pattern of microbial communities. Furthermore, during mercury pollution, the Shannon and Chao indices decreased for the bacterial communities and increased for the fungal communities. Mercury pollution mainly reduced the relative abundances of Proteobacteria (16.2−30.6%), Actinomycetes (24.7−40.8%), and other dominant bacterial phyla. The relative abundance of Ascomycota decreased by 17.4% and 16.7% in alkaline and neutral soils, respectively, whereas the relative abundance of unclassified_k_Fungi increased by 26.1% and 28.6%, respectively. In acidic soil, Ascomycota increased by 106.3% and unclassified_k_Fungi decreased by 71.2%. The results of redundancy and correlation analyses suggested that soil microbial diversity was significantly correlated with soil properties such as pH, cation exchange capacity, soil organic carbon, and total nitrogen (p < 0.05) under different treatments. Our findings highlight the impact of Hg pollution on soil microbial communities, thereby providing a theoretical foundation for the bioremediation of soil Hg pollution.
Collapse
|
4
|
Wei H, Wu L, Liu Z, Saleem M, Chen X, Xie J, Zhang J. Meta-analysis reveals differential impacts of microplastics on soil biota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113150. [PMID: 34999340 DOI: 10.1016/j.ecoenv.2021.113150] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Contamination of microplastics (MPs) is a global environmental issue that has received much attention from the scientific and public communities due to ecological concerns in recent decades. Comparing with aquatic ecosystems, soil systems, regardless of the high importance and complexity, have been less studied under widely existing and increasing MP contamination. This review, combined with data assimilation and meta-analysis methods, has summarized current contamination conditions of soil MPs across different sites reported in earlier studies. While performing this meta-analysis, we investigated the effects of MPs on soil biota including their numbers, biomass, diversity, and physiological properties. The results showed that abundance of soil MPs ranged from 0.34 to 410958.9 items kg-1 and concentration ranged from 0.002 to 67500 mg kg-1 across sites, with agricultural soils containing significantly lower abundance and concentration of MPs than others. Presence of MPs significantly decreased the individual number of soil biota, operational taxonomic unit, diversity index (Simpson), movement index and reproduction rate, whereas the mortality rate was significantly increased by the soil MPs. Despite these significant effects, MPs did not significantly alter the biomass of soil biota, which could be due to a counteraction of their negative and positive effects on different groups of soil organisms. Moreover, we observed that soil MPs could significantly increase the Chao1 index, suggesting that MPs may act as a food resource for the soil rare biosphere. Based on the existing knowledge, we suggest that future studies should focus on research areas that include but are not limited to methodological improvements, intensive field investigations, risk assessment from the perspective of soil food web and bioaccumulation, MPs induced antibiotic resistance, and restoration strategies to reduce their concentrations in soil.
Collapse
Affiliation(s)
- Hui Wei
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lizhu Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiang Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Xuan Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiefen Xie
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Jing H, Liu Y, Wang G, Liu G. Contrasting effects of nitrogen addition on rhizosphere soil CO 2, N 2O, and CH 4 emissions of fine roots with different diameters from Pinus tabulaeformis forest using laboratory incubation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146298. [PMID: 33770604 DOI: 10.1016/j.scitotenv.2021.146298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen (N) addition has variable effects on chemical composition, function, and turnover of roots with different diameters. However, it is unclear whether N addition has variable effects on greenhouse gas (GHG) emission in rhizosphere soil. We performed N addition (0-9 g N m-2 y-1) experiment in a Pinus tabulaeformis forest and a lab-incubation experiment to determine the effects of N addition on carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) emissions in rhizosphere soils of roots with different diameters (very fine roots: <0.5 mm, intermediate fine roots: 0.5-1.0 mm, largest fine roots: 1.0-2.0 mm). Nitrogen addition significantly promoted CO2 emission and CH4 uptake, with maximum values (CO2, 623.15 mg C kg soil-1; CH4, 1794.49 μg C kg soil-1) in the 6 or 9 g N m-2 y-1 treatments (P < 0.05). Nitrous oxide emissions were inhibited, with the greatest inhibitory effect in the 9 g N m-2 y-1 treatment (48.63 μg N kg soil-1). Total phosphorus (TP) content significantly decreased and increased in rhizosphere soil and non-rhizosphere soil after N addition, respectively, while organic carbon (OC), total N (TN), ammonium (NH4+), and nitrate (NO3-) contents in rhizosphere soil increased. A greater change in chemical properties occurred in rhizosphere soil of largest fine roots than very fine roots. Carbon dioxide and nitrous oxide emissions in rhizosphere soil among root sizes exhibited similar responses to N addition. While CH4 uptake was more responsive to N addition in rhizosphere soil with very fine roots than with largest fine roots. Basically, OC, TN, NO3-, and NH4+ were key soil components driving GHG emissions; NO3- promoted CH4 uptake and N2O emissions, NH4+ inhibited CO2 emissions. GHG response to N addition varied greatly, particularly in rhizosphere soil with different root sizes mainly related to its chemical properties.
Collapse
Affiliation(s)
- Hang Jing
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| | - Ying Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi Province, China; Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi Province, China; Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Guobin Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi Province, China; Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Wei H, Chen X, Kong M, He J, Shen W. Three-year-period nitrogen additions did not alter soil organic carbon content and lability in soil aggregates in a tropical forest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37793-37803. [PMID: 33723778 DOI: 10.1007/s11356-021-13466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Soil immobilizes a considerable proportion of carbon (C) as organic matter in terrestrial ecosystems and is thus critical to stabilize the global climate system. Atmospheric nitrogen (N) deposition could influence soil C storage and stabilization, but how N deposition changes soil organic C (SOC) fractions and lability remains elusive. We investigated the effects of 3-year-period N inputs on SOC fractions and lability along three soil depths (0-10, 10-20, and 20-40 cm) in a tropical forest of southern China. Results showed that N additions did not significantly change contents of SOC fractions and the C lability, either in bulk or aggregate-based soils at any of the three depths, and it showed no significant interaction with soil aggregate or soil depth. The SOC content was 43.7 ± 1.5, 18.2 ± 1.0, and 10.7 ± 0.4 mg g-1 at the three soil layers downwards, with the non-readily oxidizable SOC (NROC) contributing over 70% while the remaining SOC consisting of readily oxidizable SOC at each soil layer. Moreover, contents of SOC and NROC were consistently higher in small soil aggregates, but the C decrement with increasing size of soil aggregates declined along soil profile downwards. This scenario suggests that physical protection of the small soil aggregate is limited, but its greater specific surface area could obviously contribute to the SOC pattern among soil aggregates. These results indicate that the highly developed forests could be resistant to short-term N deposition, even with a high load, to maintain its SOC stabilization.
Collapse
Affiliation(s)
- Hui Wei
- College of Natural Resources and Environment, and Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaomei Chen
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, 510006, China
| | - Mimi Kong
- College of Natural Resources and Environment, and Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinhong He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Weijun Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
7
|
Liu Z, Shan X, Wei H, Zhang J, Saleem M, Li D, Zhang Y, Ma R, He Y, Zhong J, Liu Y. Idiosyncratic responses of microbial communities and carbon utilization to acid rain frequency in the agricultural and forest soils. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2020.e01429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
8
|
Zhang X, Chen X, Liu M, Xu Z, Wei H. Coupled changes in soil organic carbon fractions and microbial community composition in urban and suburban forests. Sci Rep 2020; 10:15933. [PMID: 32985613 PMCID: PMC7522236 DOI: 10.1038/s41598-020-73119-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change and rapid urbanization have greatly impacted urban forest ecosystems and the carbon (C) cycle. To assess the effects of urbanization on forest soil C and soil microorganisms, six natural forests in a highly-urbanized region were selected as the research objects. Soil samples were collected to investigate the content and fractions of the soil organic carbon (SOC), as well as the soil microbial community composition. The results showed that the SOC content and fractions were substantially lower in the urban forests than in the suburban forests. Meanwhile, the total amount of phospholipid fatty acids (PLFAs) at suburban sites was twice more than that at urban sites, with shifts in microbial community structure. The potential differences in C inputs and nutrient limitation in urban forests may aggravate the low quantity and quality of SOC and consequently impact microbial community abundance and structure. Variation in microbial community structure was found to explain the loss of soil C pools by affecting the C inputs and promoting the decomposition of SOC. Therefore, the coupled changes in SOC and soil microorganisms induced by urbanization may adversely affect soil C sequestration in subtropical forests.
Collapse
Affiliation(s)
- Xueying Zhang
- School of Geographical Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xiaomei Chen
- School of Geographical Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Muying Liu
- School of Geographical Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhanying Xu
- School of Geographical Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Hui Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
9
|
Wang J, Lu X, Zhang J, Ouyang Y, Wei G, Xiong Y. Rice intercropping with alligator flag (Thalia dealbata): A novel model to produce safe cereal grains while remediating cadmium contaminated paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122505. [PMID: 32200237 DOI: 10.1016/j.jhazmat.2020.122505] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/12/2020] [Accepted: 03/08/2020] [Indexed: 05/27/2023]
Abstract
Phytoremediation has been employed as a cost-effective technique to remove the cadmium (Cd) from soil and water in several ecosystems. However, little is known about whether intercropping the remediating plants with rice (Oryza sativa) crop could reduce Cd accumulation in rice grains. We conducted greenhouse pot and concrete pond trials to explore the effects of intercropping alligator flag (Thalia dealbata, Marantaceae) on soil Cd remediation, paddy soil and microbial properties, and rice production. Our results suggest that intercropping with alligator flag significantly decreased Cd absorption, transportation, and accumulation from the soil to the rice grains (under 0.2 mg kg-1 at a soil Cd content below 2.50 mg kg-1). This decrease was due to the lowered Cd availability and higher soil pH in the rice-alligator flag intercropping system. Although planting alligator flag resulted in the reduction of soil NH4-N and NO3-N, Cd content in the rhizosphere was the main factor restricting microbial biomass, species, and community composition. Alligator flag could tolerate higher Cd contamination, and accumulate and stabilize more Cd in its tissues than rice. Our study suggests that alligator flag intercropped with rice has potential as a phytostabilization plant to produce rice safely for human consumption in moderately Cd-contaminated soils.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Xuening Lu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, People's Republic of China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, People's Republic of China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| | - Ying Ouyang
- USDA Forest Service, Center for Bottomland Hardwoods Research, 775 Stone Blvd., Thompson Hall, Room 309, Mississippi State, MS 39762, United States
| | - Guangchang Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Yue Xiong
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
10
|
Wang J, Lu X, Zhang J, Ouyang Y, Qin Z, Zhao B. Using golden apple snail to mitigate its invasion and improve soil quality: a biocontrol approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14903-14914. [PMID: 32060834 DOI: 10.1007/s11356-020-07998-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The invasive and widespread golden apple snail (GAS, Pomacea canaliculata) is a harmful crop pest in many parts of Asia. The heavy use of molluscicides to control GAS could result in soil and water pollution as well as in loss of biodiversity. A sustainable and pollution-free control method is urgently needed to counteract this invasion. In this study, we proposed using dried and powdered GAS residue to neutralize and fertilize soils. We compared the effects of adding GAS residue (i.e., ground GAS shell and meat residue) to the effects of adding lime upon soil properties and microbes in a greenhouse pot experiment. Each pot was incubated for 120 days, and soil pH, nutrients, microbial species, and enzyme activity were assessed. Results showed that addition of GAS residue significantly improved soil pH, contents of total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), and available nitrogen but decreased soil available phosphorus (AP) content due to phosphorus sorption induced by soil organic matter (OM) and high pH. The GAS residue added to soil released nutrients and alleviated soil acidity, as well as provided more resources to soil microbes to increase their bioactivity, although lime addition was better at mitigating soil acidity. We found that with added GAS residue of 25 g kg-1, the soil nitrate nitrogen (NO3-N) content increased by 10 times; microbial biomass increased by 43%; and enzyme activity of β-1,4-glucosidase, β-1,4-N-acetylglucosaminidase, and β-D-cellobiosidase also were enhanced, compared to the control. Our findings suggest that GAS residue functions well as a fertilizer and soil amendment to aid the remediation of barren and acidic soils, making it a valuable and useful option in the control of the invasive GAS.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Xuening Lu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, People's Republic of China.
- Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, People's Republic of China.
| | - Ying Ouyang
- Center for Bottomland Hardwoods Research, USDA Forest Service, 775 Stone Blvd., Thompson Hall, Room 309, Starkville, MS, 39762, USA
| | - Zhong Qin
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| | - Benliang Zhao
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
11
|
Wei H, Ma R, Zhang J, Saleem M, Liu Z, Shan X, Yang J, Xiang H. Crop-litter type determines the structure and function of litter-decomposing microbial communities under acid rain conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136600. [PMID: 31958726 DOI: 10.1016/j.scitotenv.2020.136600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Acid rain has been one of the major environmental problems in industrial countries. While it may affect the litter decomposition, a highly important microbial-driven biogeochemical process, knowledge about the impact of acid rain on litter-decomposing microbial communities and their functions remains unclear. Therefore, this experiment was conducted to investigate how acid rain treatments would alter microbial communities and their functions during litter decomposition of three major commodity crops (maize, rice, and soybean) for six months from June to December 2018. We used litterbag method to determine litter decomposition,while the phospholipid fatty acid (PLFA) and fluorometric methods were used to reveal changes in the litter-adhering microbial community parameters and activities of enzymes involved in the litter decomposition and nutrient release (including carbon [C], nitrogen [N], and phosphorus [P]), respectively. Our results showed that microbial community composition and functions were significantly different among litter types, but not significantly altered by acid rain treatments during the experimental period. The enzyme activities significantly correlated with each other, thus suggesting that microbial requirements for C, N, and P were coupled together during litter decomposition. Moreover, the enzyme activities, at large, did not correlate to microbial community composition, thus indicating the asymmetric relationship between microbial community structure and functions. Our results imply that crop litter type and substrate availability determined the microbial community composition and functions, while litter-inhabiting microbial communities demonstrated substantial resilience under acid rain pressure throughout the experimental period. These results also predict that litter (crop residues) decomposition may not be altered by acid rains in the subtropical agroecosystem, due to relatively high resilience of litter-decomposing microbial communities.
Collapse
Affiliation(s)
- Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Rui Ma
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, United States
| | - Ziqiang Liu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoran Shan
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiayue Yang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huimin Xiang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Wei H, Chen X, He J, Huang L, Shen W. Warming but Not Nitrogen Addition Alters the Linear Relationship Between Microbial Respiration and Biomass. Front Microbiol 2019; 10:1055. [PMID: 31134044 PMCID: PMC6522881 DOI: 10.3389/fmicb.2019.01055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/26/2019] [Indexed: 11/29/2022] Open
Abstract
Soil contains a large amount of organic matter, which constitutes the largest terrestrial carbon pool. Heterotrophic or microbial respiration (Rh) that results from microbial decomposition of soil organic carbon (SOC) constitutes a substantial proportion of soil C efflux. Whether soil microbial biomass is of primary importance in controlling Rh remains under debate, and the question of whether the microbial biomass-decomposition relationship changes with warming and nitrogen (N) deposition has rarely been assessed. We conducted an incubation experiment to test the relationship between Rh and the size of soil microbial communities in two layers of soil collected from a natural subtropical forest and to examine whether the relationship was affected by changes in temperature and by added N in different forms. The results showed that regardless of the added N species, the N load did not significantly affect Rh or the size of the soil microbial communities. These results could be due to a long-term N-rich soil condition that acclimates soil microbial communities to resist N inputs into the studied forest; however, warming may significantly stimulate SOC decomposition, reducing soil microbial biomass under high temperatures. A significant linear soil microbial biomass-decomposition relationship was observed in our study, with the coefficients of determination ranging from 54 to 70%. Temperature rather than N additions significantly modified the linear relationship between soil microbial biomass and respiration. These results suggest that warming could impose a more substantial impact than N addition on the relationship between soil microbial biomass and SOC decomposition.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaomei Chen
- School of Geographical Sciences, Guangzhou University, Guangzhou, China
| | - Jinhong He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Letong Huang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Weijun Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|