1
|
Monaco P, Baldoni A, Naclerio G, Scippa GS, Bucci A. Impact of Plant-Microbe Interactions with a Focus on Poorly Investigated Urban Ecosystems-A Review. Microorganisms 2024; 12:1276. [PMID: 39065045 PMCID: PMC11279295 DOI: 10.3390/microorganisms12071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The urbanization process, which began with the Industrial Revolution, has undergone a considerable increase over the past few decades. Urbanization strongly affects ecological processes, often deleteriously, because it is associated with a decrease in green spaces (areas of land covered by vegetation), loss of natural habitats, increased rates of species extinction, a greater prevalence of invasive and exotic species, and anthropogenic pollutant accumulation. In urban environments, green spaces play a key role by providing many ecological benefits and contributing to human psychophysical well-being. It is known that interactions between plants and microorganisms that occur in the rhizosphere are of paramount importance for plant health, soil fertility, and the correct functioning of plant ecosystems. The growing diffusion of DNA sequencing technologies and "omics" analyses has provided increasing information about the composition, structure, and function of the rhizomicrobiota. However, despite the considerable amount of data on rhizosphere communities and their interactions with plants in natural/rural contexts, current knowledge on microbial communities associated with plant roots in urban soils is still very scarce. The present review discusses both plant-microbe dynamics and factors that drive the composition of the rhizomicrobiota in poorly investigated urban settings and the potential use of beneficial microbes as an innovative biological tool to face the challenges that anthropized environments and climate change impose. Unravelling urban biodiversity will contribute to green space management, preservation, and development and, ultimately, to public health and safety.
Collapse
Affiliation(s)
- Pamela Monaco
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (A.B.); (G.N.); (G.S.S.)
| | | | | | | | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (A.B.); (G.N.); (G.S.S.)
| |
Collapse
|
2
|
Venice F, Vizzini A, Danti R, Della Rocca G, Mello A. Responses of a soil fungal community to severe windstorm damages in an old silver fir stand. Front Microbiol 2023; 14:1246874. [PMID: 38029204 PMCID: PMC10668432 DOI: 10.3389/fmicb.2023.1246874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Forests are increasingly threatened by climate change and the Anthropocene seems to have favored the emergence and adaptation of pathogens. Robust monitoring methods are required to prevent biodiversity and ecosystems losses, and this imposes the choice of bioindicators of habitat health. Fungal communities are increasingly recognized as fundamental components in nearly all natural and artificial environments, and their ecosystem services have a huge impact in maintaining and restoring the functionality of ecosystems. We coupled metabarcoding and soil analyses to infer the dynamics of a fungal community inhabiting the old silver fir stand in Vallombrosa (Italy), which is known to be afflicted by both Armillaria and Annosum root rot. The forest was affected in 2015, by a windstorm which caused a partial falling and uprooting of trees. The remaining stand, not affected by the windstorm, was used as a comparison to infer the consequences of the ecosystem disturbance. We demonstrated that the abundance of pathogens alone is not able to explain the soil fungal differences shown by the two areas. The fungal community as a whole was equally rich in the two areas, even if a reduction of the core ectomycorrhizal mycobiome was observed in the wind-damaged area, accompanied by the increase of wood saprotrophs and arbuscular mycorrhizas. We hypothesize a reshaping of the fungal community and a potentially ongoing re-generation of its functionalities. Our hypothesis is driven by the evidence that key symbiotic, endophytic, and saprotrophic guilds are still present and diversified in the wind-damaged area, and that dominance of single taxa or biodiversity loss was not observed from a mycological point of view. With the present study, we aim at providing evidence that fungal communities are fundamental for the monitoring and the conservation of threatened forest ecosystems.
Collapse
Affiliation(s)
- Francesco Venice
- Institute for Sustainable Plant Protection (IPSP) - SS Turin - National Research Council (CNR), Turin, Italy
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Alfredo Vizzini
- Institute for Sustainable Plant Protection (IPSP) - SS Turin - National Research Council (CNR), Turin, Italy
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Roberto Danti
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), Sesto Fiorentino (FI), Italy
| | - Gianni Della Rocca
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), Sesto Fiorentino (FI), Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection (IPSP) - SS Turin - National Research Council (CNR), Turin, Italy
| |
Collapse
|
3
|
Huang L, Li Y, Yuan J, Wan S, Colinas C, He X, Shi X, Wang Y, Yu F. Tuber indicum and T. lijiangense colonization differentially regulates plant physiological responses and mycorrhizosphere bacterial community of Castanopsis rockii seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1134446. [PMID: 37123847 PMCID: PMC10130384 DOI: 10.3389/fpls.2023.1134446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Black truffles and white truffles are widely studied around the world, but their effects on plant growth and physiological responses, and on the mycorrhizosphere bacterial community of the host plant remain unclear. Here, mycorrhizal colonization of Castanopsis rockii by Tuber indicum (Chinese black truffle) and T. lijiangense (Chinese white truffle), respectively, was induced in a greenhouse study, and their effects on host growth, physiological responses and mycorrhizosphere bacterial communities were compared. The results show that colonization of both Tuber species significantly increased leaf photosynthetic rate, leaf P concentration and mycorrhizosphere acid phosphatase activity, as well as richness of mycorrhizosphere bacterial communities of C. rockii seedlings. However, T. indicum colonization on the one hand significantly decreased tartrate content, bacterial acid phosphatase, phoC gene abundance in the mycorrhizosphere, and peroxidase (POD) activity of ectomycorrhizal root tips, but on the other hand increased mycorrhizosphere pH and superoxide dismutase (SOD) of ectomycorrhizal root tips, compared to T. lijiangense colonization. Moreover, principal coordinate and β-diversity analyses show significant differences in mycorrhizosphere bacterial community composition between T. indicum and T. lijiangese colonized C. rockii seedlings. Finally, the relative abundance of the bacterium Agromyces cerinus significantly correlated to mycorrhizosphere acid phosphatase activity and leaf P concentration, suggesting that this bacterium might play an important role in P mobilization and acquisition. Overall, these results suggest that T. indicum and T. lijiangense differently regulate their host plant's physiological responses and mycorrhizosphere bacterial community.
Collapse
Affiliation(s)
- Lanlan Huang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yongmei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Jing Yuan
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shanping Wan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Carlos Colinas
- Department of Crop and Forest Science, University of Lleida, Lleida, Spain
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Centre of Excellence for Soil Biology, College of Resources and Environment, and Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, China
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Guizhou Kangqunyuan Biotechnology Co., LTD, Liupanshui, Guizhou, China
| | - Yanliang Wang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yanliang Wang, ; Fuqiang Yu,
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yanliang Wang, ; Fuqiang Yu,
| |
Collapse
|
4
|
Peng L, Zhang Y, Druzhinina IS, Kubicek CP, Wang Y, Zhu Z, Zhang Y, Wang K, Liu Z, Zhang X, Martin F, Yuan Z. A facultative ectomycorrhizal association is triggered by organic nitrogen. Curr Biol 2022; 32:5235-5249.e7. [PMID: 36402137 DOI: 10.1016/j.cub.2022.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
Abstract
Increasing nitrogen (N) deposition often tends to negatively impact the functions of belowground ectomycorrhizal networks, although the exact molecular mechanisms underlying this trait are still unclear. Here, we assess how the root-associated fungus Clitopilus hobsonii establishes an ectomycorrhiza-like association with its host tree Populus tomentosa and how this interaction is favored by organic N over mineral N. The establishment of a functional symbiosis in the presence of organic N promotes plant growth and the transfer of 15N from the fungus to above ground plant tissues. Genomic traits and in planta transcriptional signatures suggest that C. hobsonii may have a dual lifestyle with saprotrophic and mutualistic traits. For example, several genes involved in the digestion of cellulose and hemicellulose are highly expressed during the interaction, whereas the expression of multiple copies of pectin-digesting genes is tightly controlled. Conversely, the nutritional mutualism is dampened in the presence of ammonium (NH4+) or nitrate (NO3-). Increasing levels of NH4+ led to a higher expression of pectin-digesting genes and a continuous increase in hydrogen peroxide production in roots, whereas the presence of NO3- resulted in toxin production. In summary, our results suggest that C. hobsonii is a facultative ectomycorrhizal fungus. Access to various forms of N acts as an on/off switch for mutualism caused by large-scale fungal physiological remodeling. Furthermore, the abundance of pectin-degrading enzymes with distinct expression patterns during functional divergence after exposure to NH4+ or organic N is likely to be central to the transition from parasitism to mutualism.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Yan Zhang
- Liaoning Provincial Institute of Poplar, Gaizhou 115213, China
| | | | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna A1060, Austria
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Zhiyong Zhu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Yuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Kexuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Zhuo Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Xiaoguo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 "Interactions Arbres/Microorganismes," Centre INRAE Grand Est - Nancy, Champenoux 54280, France.
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China.
| |
Collapse
|
5
|
Monaco P, Naclerio G, Mello A, Bucci A. Role and potentialities of bacteria associated with Tuber magnatum: A mini-review. Front Microbiol 2022; 13:1017089. [PMID: 36274685 PMCID: PMC9584545 DOI: 10.3389/fmicb.2022.1017089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Among the hypogeous ectomycorrhizal fungi, the white truffle Tuber magnatum Picco is the species of greatest interest, both from an ecological and economic point of view. The increasing market demand of the precious white truffle along with the fall in its natural production led to a growing interest in cultivation techniques and encouraged truffle growers and researchers to deeper investigate factors that could affect and improve T. magnatum productivity. In this context, microbial communities play a central role. Indeed, in the last few years, the hypothesis of a potential link between microbial community composition and truffle orchard productivity is arousing a greater attention. Moreover, since the value of the prized T. magnatum can vary in relation to its provenience, the need to define a reliable tracking system is also emerging and bacteria appear to be a promising tool. Accordingly, the present mini-review summarises the knowledge currently available on T. magnatum microbial communities, focusing on the role of truffle-associated bacteria and highlighting similarities and differences between samples of different origin, to address the following issues: (i) Is there a correlation between microbial taxa and truffle ground productivity? (ii) Can bacteria actually be used as markers of T. magnatum geographic origin? The identification of microorganisms able to promote T. magnatum formation may represent an important advance in the field of truffle farming. Similarly, the detection of bacterial taxa that can be used as markers of T. magnatum origin could have a considerable impact on truffle industry and trade, even at local scale.
Collapse
Affiliation(s)
- Pamela Monaco
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Gino Naclerio
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection (IPSP), Turin Unit, National Research Council, Turin, Italy
| | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| |
Collapse
|
6
|
Sillo F, Brunetti C, Marroni F, Vita F, Dos Santos Nascimento LB, Vizzini A, Mello A, Balestrini R. Systemic effects of Tuber melanosporum inoculation in two Corylus avellana genotypes. TREE PHYSIOLOGY 2022; 42:1463-1480. [PMID: 35137225 DOI: 10.1093/treephys/tpac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Roots of the European hazelnut (Corylus avellana L.), i.e., one of the most economically important nut species, form symbiosis with ectomycorrhizal (ECM) fungi, including truffles. Although physical interactions only occur in roots, the presence of mycorrhizal fungi can lead to metabolic changes at a systemic level, i.e., in leaves. However, how root colonization by ECM fungi modifies these processes in the host plant has so far not been widely studied. This work aimed to investigate the response in two C. avellana genotypes, focusing on leaves from plants inoculated with the black truffle Tuber melanosporum Vittad. Transcriptomic profiles of leaves of colonized plants were compared with those of non-colonized plants, as well as sugar and polyphenolic content. Results suggested that T. melanosporum has the potential to support plants in stressed conditions, leading to the systemic regulation of several genes involved in signaling and defense responses. Although further confirmation is needed, our results open new perspectives for future research aimed to highlight novel aspects in ECM symbiosis.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Strada della Cacce 73, 10135 Torino, Italy
| | - Cecilia Brunetti
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019 Firenze, Italy
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Alfredo Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Viale Mattioli 25, 10125 Torino, Italy
| | - Antonietta Mello
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Viale Mattioli 25, 10125 Torino, Italy
| | - Raffaella Balestrini
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Strada della Cacce 73, 10135 Torino, Italy
| |
Collapse
|
7
|
Venice F, Vizzini A, Frascella A, Emiliani G, Danti R, Della Rocca G, Mello A. Localized reshaping of the fungal community in response to a forest fungal pathogen reveals resilience of Mediterranean mycobiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149582. [PMID: 34426333 DOI: 10.1016/j.scitotenv.2021.149582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Mediterranean forests are facing the impact of pests such as the soilborne Phytophthora cambivora, the causal agent of Ink disease, and this impact is made more severe by global changes. The status and resilience of the soil microbial ecosystem in areas with such a disturbance are little known; however, the assessment of the microbial community is fundamental to preserve the ecosystem functioning under emerging challenges. We profile soil fungal communities in a chestnut stand affected by ink disease in Italy using metabarcoding, and couple high-throughput sequencing with physico-chemical parameters and dendrometric measurements. Since the site also includes an area where the disease symptoms seem to be suppressed, we performed several analyses to search for determinants that may contribute to such difference. We demonstrate that neither pathogen presence nor trees decline associate with the reduction of the residing community diversity and functions, but rather with microbial network reshaping through substitutions and new interactions, despite a conservation of core taxa. We predict interactions between taxa and parameters such as soil pH and C/N ratio, and suggest that disease incidence may also relate with disappearance of pathogen antagonists, including ericoid- and ectomycorrhizal (ECM) fungi. By combining metabarcoding and field studies, we infer the resilient status of the fungal community towards a biotic stressor, and provide a benchmark for the study of other threatened ecosystems.
Collapse
Affiliation(s)
- Francesco Venice
- Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125 Turin, Italy
| | - Alfredo Vizzini
- Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125 Turin, Italy; Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Arcangela Frascella
- Institute for Sustainable Plant Protection (IPSP)-National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto F.no (FI), Italy
| | - Giovanni Emiliani
- Institute for Sustainable Plant Protection (IPSP)-National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto F.no (FI), Italy
| | - Roberto Danti
- Institute for Sustainable Plant Protection (IPSP)-National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto F.no (FI), Italy
| | - Gianni Della Rocca
- Institute for Sustainable Plant Protection (IPSP)-National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto F.no (FI), Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125 Turin, Italy.
| |
Collapse
|
8
|
Monaco P, Bucci A, Naclerio G, Mello A. Heterogeneity of the white truffle Tuber magnatum in a limited geographic area of Central-Southern Italy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:591-599. [PMID: 33943006 DOI: 10.1111/1758-2229.12956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Molise region (Central-Southern Italy) is one of the Italian richest areas of truffles and contributes significantly to the national production of the precious Tuber magnatum. Nevertheless, Molise truffle has received little scientific attention. Accordingly, in the present study, two T. magnatum populations collected in two different sites of Molise region were characterised from a morphological, genetic and microbiological point of view. A considerable variability between and within the two analysed groups emerged, suggesting an interesting heterogeneity of Molise white truffle populations. Ascocarps of the two groups significantly differed in size and maturation degree, although no linear correlation between weight and maturity was found. Genetic investigations focused on the Sequence-Characterised Amplified Region SCAR A21-inf. Three haplotypes, randomly distributed within the two truffle groups regardless of their collection sites, were detected. The 16S rRNA gene amplicon high-throughput sequencing provided an overview of the composition of the ascocarp-associated bacterial communities. A predominance of α-Proteobacteria was observed, with Bradyrhizobium among the main genera. However, some truffles showed unusual microbial profiles, with Pedobacter, Polaromonas and other bacterial genera as dominant taxa.
Collapse
Affiliation(s)
- Pamela Monaco
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche (IS), 86090, Italy
| | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche (IS), 86090, Italy
| | - Gino Naclerio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche (IS), 86090, Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection (IPSP), Turin Unit, National Research Council, Viale P.A. Mattioli 25, Turin, 10125, Italy
| |
Collapse
|
9
|
Metabolomics and transcriptomics to decipher molecular mechanisms underlying ectomycorrhizal root colonization of an oak tree. Sci Rep 2021; 11:8576. [PMID: 33883599 PMCID: PMC8060265 DOI: 10.1038/s41598-021-87886-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
Mycorrhizas are known to have a positive impact on plant growth and ability to resist major biotic and abiotic stresses. However, the metabolic alterations underlying mycorrhizal symbiosis are still understudied. By using metabolomics and transcriptomics approaches, cork oak roots colonized by the ectomycorrhizal fungus Pisolithus tinctorius were compared with non-colonized roots. Results show that compounds putatively corresponding to carbohydrates, organic acids, tannins, long-chain fatty acids and monoacylglycerols, were depleted in ectomycorrhizal cork oak colonized roots. Conversely, non-proteogenic amino acids, such as gamma-aminobutyric acid (GABA), and several putative defense-related compounds, including oxylipin-family compounds, terpenoids and B6 vitamers were induced in mycorrhizal roots. Transcriptomic analysis suggests the involvement of GABA in ectomycorrhizal symbiosis through increased synthesis and inhibition of degradation in mycorrhizal roots. Results from this global metabolomics analysis suggest decreases in root metabolites which are common components of exudates, and in compounds related to root external protective layers which could facilitate plant-fungal contact and enhance symbiosis. Root metabolic pathways involved in defense against stress were induced in ectomycorrhizal roots that could be involved in a plant mechanism to avoid uncontrolled growth of the fungal symbiont in the root apoplast. Several of the identified symbiosis-specific metabolites, such as GABA, may help to understand how ectomycorrhizal fungi such as P. tinctorius benefit their host plants.
Collapse
|
10
|
Agrobacterium tumefaciens-Mediated Genetic Transformation of the Ect-endomycorrhizal Fungus Terfezia boudieri. Genes (Basel) 2020; 11:genes11111293. [PMID: 33143066 PMCID: PMC7693413 DOI: 10.3390/genes11111293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023] Open
Abstract
Mycorrhizal desert truffles such as Terfezia boudieri, Tirmania nivea, and Terfezia claveryi, form mycorrhizal associations with plants of the Cistaceae family. These valued truffles are still collected from the wild and not cultivated under intensive farming due to the lack of basic knowledge about their biology at all levels. Recently, several genomes of desert truffles have been decoded, enabling researchers to attempt genetic manipulations to enable cultivation. To execute such manipulations, the development of molecular tools for genes transformation into truffles is needed. We developed an Agrobacterium tumefaciens-mediated genetic transformation system in T. boudieri. This system was optimized for the developmental stage of the mycelia explants, bacterial optical density, infection and co-cultivation durations, and concentrations of the selection antibiotics. The pFPL-Rh plasmid harboring hph gene conferring hygromycin resistance as a selection marker and the red fluorescent protein gene were used as visual reporters. The optimal conditions were incubation with 200 μM of acetosyringone, attaining a bacterial optical density of 0.3 OD600; transfer time of 45 min; and co-cultivation for 3 days. This is the first report on a transformation system for T. boudieri, and the proposed protocol can be adapted for the transformation of other important desert truffles as well as ectomycorrhizal species.
Collapse
|
11
|
Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 2020; 18:649-660. [PMID: 32694620 DOI: 10.1038/s41579-020-0402-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Mycorrhizas are among the most important biological interkingdom interactions, as they involve ~340,000 land plants and ~50,000 taxa of soil fungi. In these mutually beneficial interactions, fungi receive photosynthesis-derived carbon and provide the host plant with mineral nutrients such as phosphorus and nitrogen in exchange. More than 150 years of research on mycorrhizas has raised awareness of their biology, biodiversity and ecological impact. In this Review, we focus on recent phylogenomic, molecular and cell biology studies to present the current state of knowledge of the origin of mycorrhizal fungi and the evolutionary history of their relationship with land plants. As mycorrhizas feature a variety of phenotypes, depending on partner taxonomy, physiology and cellular interactions, we explore similarities and differences between mycorrhizal types. During evolution, mycorrhizal fungi have refined their biotrophic capabilities to take advantage of their hosts as food sources and protective niches, while plants have developed multiple strategies to accommodate diverse fungal symbionts. Intimate associations with pervasive ecological success have originated at the crossroads between these two evolutionary pathways. Our understanding of the biological processes underlying these symbioses, where fungi act as biofertilizers and bioprotectors, provides the tools to design biotechnological applications addressing environmental and agricultural challenges.
Collapse
Affiliation(s)
- Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
12
|
Monaco P, Toumi M, Sferra G, Tóth E, Naclerio G, Bucci A. The bacterial communities of Tuber aestivum: preliminary investigations in Molise region, Southern Italy. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01586-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Zhang X, Li X, Ye L, Huang Y, Kang Z, Zhang B, Zhang X. Colonization by Tuber melanosporum and Tuber indicum affects the growth of Pinus armandii and phoD alkaline phosphatase encoding bacterial community in the rhizosphere. Microbiol Res 2020; 239:126520. [PMID: 32526628 DOI: 10.1016/j.micres.2020.126520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/17/2022]
Abstract
The synthesis of truffle ectomycorrhizae and the ecology of truffle-colonized seedlings in the early symbiotic stage are important for the successful truffle cultivation. In this study, two black truffle species, Tuber melanosporum and Tuber indicum, were selected to colonize Pinus armandii seedlings. 2, 4, 6 and 8 months after inoculation, the growth performance of the host and the rhizosphere soil properties were detected. The dynamic changes of two mating type genes in substrate were also monitored to assess the sexual distribution of truffles. Additionally, the variation of soil bacterial communities encoded by phoD alkaline phosphatase genes was investigated through next-generation sequencing. The results indicated that both T. melanosporum and T. indicum colonization promoted the growth of P. armandii seedlings to some extent, including improving their biomass, total root surface area, root superoxide dismutases and peroxidase activity. The organic matter and available phosphorus in rhizosphere soil were also significantly enhanced by two truffles' colonization. The phoD-harboring bacterial community structure was altered by both truffles, and T. melanosporum decreased their diversity or richness on the 6th and 8th month after inoculation. Pseudomonas, Xanthomonas, and Sinorhizobium, a N2-fixer with phoD genes, were found more abundant in truffle-colonized treatments. The mating type distribution of the two truffles was uneven, with MAT1-1-1 gene occupying the majority. Overall, T. melanosporum and T. indicum colonization affected the micro-ecology of truffle symbionts during the early symbiotic stage. These results could give us a better understanding on the truffle-plant-soil-microbe interactions, which would be beneficial to the subsequent truffle cultivation.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yue Huang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zongjing Kang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
14
|
Basso V, Kohler A, Miyauchi S, Singan V, Guinet F, Šimura J, Novák O, Barry KW, Amirebrahimi M, Block J, Daguerre Y, Na H, Grigoriev IV, Martin F, Veneault-Fourrey C. An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. PLANT, CELL & ENVIRONMENT 2020; 43:1047-1068. [PMID: 31834634 DOI: 10.1111/pce.13702] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The phytohormones jasmonate, gibberellin, salicylate, and ethylene regulate an interconnected reprogramming network integrating root development with plant responses against microbes. The establishment of mutualistic ectomycorrhizal symbiosis requires the suppression of plant defense responses against fungi as well as the modification of root architecture and cortical cell wall properties. Here, we investigated the contribution of phytohormones and their crosstalk to the ontogenesis of ectomycorrhizae (ECM) between grey poplar (Populus tremula x alba) roots and the fungus Laccaria bicolor. To obtain the hormonal blueprint of developing ECM, we quantified the concentrations of jasmonates, gibberellins, and salicylate via liquid chromatography-tandem mass spectrometry. Subsequently, we assessed root architecture, mycorrhizal morphology, and gene expression levels (RNA sequencing) in phytohormone-treated poplar lateral roots in the presence or absence of L. bicolor. Salicylic acid accumulated in mid-stage ECM. Exogenous phytohormone treatment affected the fungal colonization rate and/or frequency of Hartig net formation. Colonized lateral roots displayed diminished responsiveness to jasmonate but regulated some genes, implicated in defense and cell wall remodelling, that were specifically differentially expressed after jasmonate treatment. Responses to salicylate, gibberellin, and ethylene were enhanced in ECM. The dynamics of phytohormone accumulation and response suggest that jasmonate, gibberellin, salicylate, and ethylene signalling play multifaceted roles in poplar L. bicolor ectomycorrhizal development.
Collapse
Affiliation(s)
- Veronica Basso
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Annegret Kohler
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Shingo Miyauchi
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Vasanth Singan
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Frédéric Guinet
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Jan Šimura
- Laboratory of Growth, Palacký University, Faculty of Science & The Czech Academy of Sciences, Institute of Experimental Botany, Olomouc, The Czech Republic
| | - Ondřej Novák
- Laboratory of Growth, Palacký University, Faculty of Science & The Czech Academy of Sciences, Institute of Experimental Botany, Olomouc, The Czech Republic
| | - Kerrie W Barry
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Mojgan Amirebrahimi
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Jonathan Block
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Yohann Daguerre
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
- Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Hyunsoo Na
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Igor V Grigoriev
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California
| | - Francis Martin
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | | |
Collapse
|
15
|
Kang H, Chen X, Kemppainen M, Pardo AG, Veneault-Fourrey C, Kohler A, Martin FM. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ Microbiol 2020; 22:1435-1446. [PMID: 32090429 DOI: 10.1111/1462-2920.14959] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
To establish and maintain a symbiotic relationship, the ectomycorrhizal fungus Laccaria bicolor releases mycorrhiza-induced small secreted proteins (MiSSPs) into host roots. Here, we have functionally characterized the MYCORRHIZA-iNDUCED SMALL SECRETED PROTEIN OF 7.6 kDa (MiSSP7.6) from L. bicolor by assessing its induced expression in ectomycorrhizae, silencing its expression by RNAi, and tracking in planta subcellular localization of its protein product. We also carried out yeast two-hybrid assays and bimolecular fluorescence complementation analysis to identify possible protein targets of the MiSSP7.6 effector in Populus roots. We showed that MiSSP7.6 expression is upregulated in ectomycorrhizal rootlets and associated extramatrical mycelium during the late stage of symbiosis development. RNAi mutants with a decreased MiSSP7.6 expression have a lower mycorrhization rate, suggesting a key role in the establishment of the symbiosis with plants. MiSSP7.6 is secreted, and it localizes both to the nuclei and cytoplasm in plant cells. MiSSP7.6 protein was shown to interact with two Populus Trihelix transcription factors. Furthermore, when coexpressed with one of the Trihelix transcription factors, MiSSP7.6 is localized to plant nuclei only. Our data suggest that MiSSP7.6 is a novel secreted symbiotic effector and is a potential determinant for ectomycorrhiza formation.
Collapse
Affiliation(s)
- Heng Kang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Xin Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, Argentina
| | - Alejandro G Pardo
- Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, Argentina
| | - Claire Veneault-Fourrey
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Annegret Kohler
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Francis M Martin
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| |
Collapse
|
16
|
Pei Y, Siemann E, Tian B, Ding J. Root flavonoids are related to enhanced AMF colonization of an invasive tree. AOB PLANTS 2020; 12:plaa002. [PMID: 32071712 PMCID: PMC7015461 DOI: 10.1093/aobpla/plaa002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/09/2020] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are important mutualistic microbes in soil, which have capacity to form mutualistic associations with most land plants. Arbuscular mycorrhizal fungi play an important role in plant invasions and their interactions with invasive plants have received increasing attention. However, the chemical mechanisms underlying the interactions of AMF and invasive plants are still poorly understood. In this study we aim to test whether root secondary chemicals are related to enhanced AMF colonization and rapid growth in an invasive tree. We conducted a common garden experiment in China with Chinese tallow tree (Triadica sebifera) to examine the relationships among AMF colonization and secondary metabolites in roots of plants from introduced (USA) and native (China) populations. We found that AMF colonization rate was higher in introduced populations compared to native populations. Roots of plants from introduced populations had lower levels of phenolics and tannins, but higher levels of flavonoids than those of plants from native populations. Flavonoids were positively correlated with AMF colonization, and this relationship was especially strong for introduced populations. Besides, AMF colonization was positively correlated with plant biomass suggesting that higher root flavonoids and AMF colonization may impact plant performance. This suggests that higher root flavonoids in plants from introduced populations may promote AMF spore germination and/or attract hyphae to their roots, which may subsequently increase plant growth. Overall, our results support a scenario in which invasive plants enhance their AMF association and invasion success via genetic changes in their root flavonoid metabolism. These findings advance our understanding of the mechanisms underlying plant invasion success and the evolutionary interactions between plants and AMF. Understanding such mechanisms of invasive plant success is critical for predicting and managing plant invasions in addition to providing important insights into the chemical mechanism of AMF-plant interactions.
Collapse
Affiliation(s)
- Yingchun Pei
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, USA
| | - Baoliang Tian
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China
- Corresponding authors’ e-mail addresses: ;
| | - Jianqing Ding
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, China
- Corresponding authors’ e-mail addresses: ;
| |
Collapse
|
17
|
Kariman K, Barker SJ, Tibbett M. Structural plasticity in root-fungal symbioses: diverse interactions lead to improved plant fitness. PeerJ 2018; 6:e6030. [PMID: 30533314 PMCID: PMC6284451 DOI: 10.7717/peerj.6030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023] Open
Abstract
Root-fungal symbioses such as mycorrhizas and endophytes are key components of terrestrial ecosystems. Diverse in trophy habits (obligate, facultative or hemi-biotrophs) and symbiotic relations (from mutualism to parasitism), these associations also show great variability in their root colonization and nutritional strategies. Specialized interface structures such as arbuscules and Hartig nets are formed by certain associations while others are restricted to non-specialized intercellular or intracellular hyphae in roots. In either case, there are documented examples of active nutrient exchange, reinforcing the fact that specialized structures used to define specific mycorrhizal associations are not essential for reciprocal exchange of nutrients and plant growth promotion. In feremycorrhiza (with Austroboletus occidentalis and eucalypts), the fungal partner markedly enhances plant growth and nutrient acquisition without colonizing roots, emphasizing that a conventional focus on structural form of associations may have resulted in important functional components of rhizospheres being overlooked. In support of this viewpoint, mycobiome studies using the state-of-the-art DNA sequencing technologies have unearthed much more complexity in root-fungal relationships than those discovered using the traditional morphology-based approaches. In this review, we explore the existing literature and most recent findings surrounding structure, functioning, and ecology of root-fungal symbiosis, which highlight the fact that plant fitness can be altered by taxonomically/ecologically diverse fungal symbionts regardless of root colonization and interface specialization. Furthermore, transition from saprotrophy to biotrophy seems to be a common event that occurs in diverse fungal lineages (consisting of root endophytes, soil saprotrophs, wood decayers etc.), and which may be accompanied by development of specialized interface structures and/or mycorrhiza-like effects on plant growth and nutrition.
Collapse
Affiliation(s)
- Khalil Kariman
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Susan Jane Barker
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Tibbett
- Centre for Agri-Environmental Research & Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Berkshire, United Kingdom
| |
Collapse
|
18
|
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Zhao J, Huang W. The first complete mitochondrial genome from the family Hygrophoraceae (Hygrophorus russula) by next-generation sequencing and phylogenetic implications. Int J Biol Macromol 2018; 122:1313-1320. [PMID: 30227210 DOI: 10.1016/j.ijbiomac.2018.09.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023]
Abstract
Hygrophorus russula (Schaeff.) Kauffman is an edible ectomycorrhizal fungus that is widely distributed in the world. In this study, the mitogenome of H. russula was sequenced and assembled. The mitogenome of H. russula is composed of circular DNA molecules, with a total size of 55,769 bp. Further analysis indicated that the frequent use of A and T in codons contributes to the high AT content (80.87%) in the H. russula mitogenome. Comparative analysis indicated that the length and base composition of the core protein-encoding genes, and the number of tRNA genes in the H. russula mitogenome varied from that of other Agaricales mitogenomes. Gene arrangement analysis revealed a novel gene order in the H. russula mitogenome. In addition, the expansion of the mitogenome in Agaricales was found to be closely related to the increase in the number of introns. Phylogenetic analysis of the combined mitochondrial gene set showed strong support for tree topologies, and H. russula was determined to be relatively distant from other Agaricales species. This study is the first report on the mitogenome of a member of genus Hygrophorus as well as family Hygrophoraceae, which improves our understanding of mitochondrial differentiation and evolution in the important ectomycorrhizal fungi Hygrophorus species.
Collapse
Affiliation(s)
- Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Zuqin Chen
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China
| | - Jian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan, PR China.
| |
Collapse
|