1
|
Gaenssle ALO, Bertran-Llorens S, Deuss PJ, Jurak E. Enrichment of Aquatic Xylan-Degrading Microbial Communities. Microorganisms 2024; 12:1715. [PMID: 39203557 PMCID: PMC11356981 DOI: 10.3390/microorganisms12081715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
The transition towards a sustainable society involves the utilization of lignocellulosic biomass as a renewable feedstock for materials, fuel, and base chemicals. Lignocellulose consists of cellulose, hemicellulose, and lignin, forming a complex, recalcitrant matrix where efficient enzymatic saccharification is pivotal for accessing its valuable components. This study investigated microbial communities from brackish Lauwersmeer Lake, in The Netherlands, as a potential source of xylan-degrading enzymes. Environmental sediment samples were enriched with wheat arabinoxylan (WAX) and beechwood glucuronoxylan (BEX), with enrichment on WAX showing higher bacterial growth and complete xylan degradation compared to BEX. Metagenomic sequencing revealed communities consisting almost entirely of bacteria (>99%) and substantial shifts in composition during the enrichment. The first generation of seven-day enrichments on both xylans led to a high accumulation of Gammaproteobacteria (49% WAX, 84% BEX), which were largely replaced by Alphaproteobacteria (42% WAX, 69% BEX) in the fourth generation. Analysis of the protein function within the sequenced genomes showed elevated levels of genes associated with the carbohydrate catabolic process, specifically targeting arabinose, xylose, and xylan, indicating an adaptation to the primary monosaccharides present in the carbon source. The data open up the possibility of discovering novel xylan-degrading proteins from other sources aside from the thoroughly studied Bacteroidota.
Collapse
Affiliation(s)
- Aline Lucie Odette Gaenssle
- Department of Bioproduct Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Salvador Bertran-Llorens
- Department of Chemical Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Peter Joseph Deuss
- Department of Chemical Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Edita Jurak
- Department of Chemical Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Shang Z, Chen K, Han T, Bu F, Sun S, Zhu N, Man D, Yang K, Yuan S, Fu H. Natural Foraging Selection and Gut Microecology of Two Subterranean Rodents from the Eurasian Steppe in China. Animals (Basel) 2024; 14:2334. [PMID: 39199868 PMCID: PMC11350848 DOI: 10.3390/ani14162334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
As the most abundant group of mammals, rodents possess a very rich ecotype, which makes them ideal for studying the relationship between diet and host gut microecology. Zokors are specialized herbivorous rodents adapted to living underground. Unlike more generalized herbivorous rodents, they feed on the underground parts of grassland plants. There are two species of the genus Myospalax in the Eurasian steppes in China: one is Myospalax psilurus, which inhabits meadow grasslands and forest edge areas, and the other is M. aspalax, which inhabits typical grassland areas. How are the dietary choices of the two species adapted to long-term subterranean life, and what is the relationship of this diet with gut microbes? Are there unique indicator genera for their gut microbial communities? Relevant factors, such as the ability of both species to degrade cellulose, are not yet clear. In this study, we analyzed the gut bacterial communities and diet compositions of two species of zokors using 16S amplicon technology combined with macro-barcoding technology. We found that the diversity of gut microbial bacterial communities in M. psilurus was significantly higher than that in M. aspalax, and that the two species of zokors possessed different gut bacterial indicator genera. Differences in the feeding habits of the two species of zokors stem from food composition rather than diversity. Based on the results of Mantel analyses, the gut bacterial community of M. aspalax showed a significant positive correlation with the creeping-rooted type food, and there was a complementary relationship between the axis root-type-food- and the rhizome-type-food-dominated (containing bulb types and tuberous root types) food groups. Functional prediction based on KEGG found that M. psilurus possessed a stronger degradation ability in the same cellulose degradation pathway. Neutral modeling results show that the gut flora of the M. psilurus has a wider ecological niche compared to that of the M. aspalax. This provides a new perspective for understanding how rodents living underground in grassland areas respond to changes in food conditions.
Collapse
Affiliation(s)
- Zhenghaoni Shang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Kai Chen
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Tingting Han
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Fan Bu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Shanshan Sun
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Na Zhu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Duhu Man
- College of Agriculture, Hulunbuir University, Hulunbuir 021000, China;
| | - Ke Yang
- Alxa League Meteorological Bureau, Alxa 750300, China;
| | - Shuai Yuan
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Heping Fu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| |
Collapse
|
3
|
Gómez-Pérez D, Schmid M, Chaudhry V, Hu Y, Velic A, Maček B, Ruhe J, Kemen A, Kemen E. Proteins released into the plant apoplast by the obligate parasitic protist Albugo selectively repress phyllosphere-associated bacteria. THE NEW PHYTOLOGIST 2023; 239:2320-2334. [PMID: 37222268 DOI: 10.1111/nph.18995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
Biotic and abiotic interactions shape natural microbial communities. The mechanisms behind microbe-microbe interactions, particularly those protein based, are not well understood. We hypothesize that released proteins with antimicrobial activity are a powerful and highly specific toolset to shape and defend plant niches. We have studied Albugo candida, an obligate plant parasite from the protist Oomycota phylum, for its potential to modulate the growth of bacteria through release of antimicrobial proteins into the apoplast. Amplicon sequencing and network analysis of Albugo-infected and uninfected wild Arabidopsis thaliana samples revealed an abundance of negative correlations between Albugo and other phyllosphere microbes. Analysis of the apoplastic proteome of Albugo-colonized leaves combined with machine learning predictors enabled the selection of antimicrobial candidates for heterologous expression and study of their inhibitory function. We found for three candidate proteins selective antimicrobial activity against Gram-positive bacteria isolated from A. thaliana and demonstrate that these inhibited bacteria are precisely important for the stability of the community structure. We could ascribe the antibacterial activity of the candidates to intrinsically disordered regions and positively correlate it with their net charge. This is the first report of protist proteins with antimicrobial activity under apoplastic conditions that therefore are potential biocontrol tools for targeted manipulation of the microbiome.
Collapse
Affiliation(s)
- Daniel Gómez-Pérez
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Monja Schmid
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Vasvi Chaudhry
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Yiheng Hu
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Ana Velic
- Department of Biology, Quantitative Proteomics Group, Interfaculty Institute of Cell Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Boris Maček
- Department of Biology, Quantitative Proteomics Group, Interfaculty Institute of Cell Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Jonas Ruhe
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ariane Kemen
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Eric Kemen
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Zhu J, Liu J, Li W, Ru Y, Sun D, Liu C, Li Z, Liu W. Dynamic changes in community structure and degradation performance of a bacterial consortium MMBC-1 during the subculturing revival reveal the potential decomposers of lignocellulose. BIORESOUR BIOPROCESS 2022; 9:110. [PMID: 38647799 PMCID: PMC10991580 DOI: 10.1186/s40643-022-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
Bacterial consortium is an important source of lignocellulolytic strains, but it is still a challenge to distinguish the direct decomposers of lignocellulose from other bacteria in such a complex community. This study aims at addressing this issue by focusing on the dynamic changes in community structure and degradation activity of MMBC-1, an established and stable lignocellulolytic bacterial consortium, during its subculturing revival. MMBC-1 was cryopreserved with glycerol as a protective agent and then inoculated for revival. Its enzyme activities for degradation recovered to the maximum level after two rounds of subculturing. Correspondingly, the cellulose and hemicellulose in lignocellulosic carbon source were gradually decomposed during the revival. Meanwhile, the initial dominant bacteria represented by genus Clostridium were replaced by the bacteria belonging to Lachnospira, Enterococcus, Bacillus, Haloimpatiens genera and family Lachnospiraceae. However, only three high-abundance (> 1%) operational taxonomic units (OTUs) (Lachnospira, Enterococcus and Haloimpatiens genera) were suggested to directly engage in lignocellulose degradation according to correlation analysis. By comparison, many low-abundance OTUs, such as the ones belonging to Flavonifractor and Anaerotruncus genera, may play an important role in degradation. These findings showed the dramatic changes in community structure that occurred during the subculturing revival, and paved the way for the discovery of direct decomposers in a stable consortium.
Collapse
Affiliation(s)
- Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Weilin Li
- Institutional Center for Shared Technologies and Facilities, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunrui Ru
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China.
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New District, Xuzhou, 221116, Jiangsu Province, China.
| |
Collapse
|
5
|
Díaz Rodríguez CA, Díaz-García L, Bunk B, Spröer C, Herrera K, Tarazona NA, Rodriguez-R LM, Overmann J, Jiménez DJ. Novel bacterial taxa in a minimal lignocellulolytic consortium and their potential for lignin and plastics transformation. ISME COMMUNICATIONS 2022; 2:89. [PMID: 37938754 PMCID: PMC9723784 DOI: 10.1038/s43705-022-00176-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2023]
Abstract
The understanding and manipulation of microbial communities toward the conversion of lignocellulose and plastics are topics of interest in microbial ecology and biotechnology. In this study, the polymer-degrading capability of a minimal lignocellulolytic microbial consortium (MELMC) was explored by genome-resolved metagenomics. The MELMC was mostly composed (>90%) of three bacterial members (Pseudomonas protegens; Pristimantibacillus lignocellulolyticus gen. nov., sp. nov; and Ochrobactrum gambitense sp. nov) recognized by their high-quality metagenome-assembled genomes (MAGs). Functional annotation of these MAGs revealed that Pr. lignocellulolyticus could be involved in cellulose and xylan deconstruction, whereas Ps. protegens could catabolize lignin-derived chemical compounds. The capacity of the MELMC to transform synthetic plastics was assessed by two strategies: (i) annotation of MAGs against databases containing plastic-transforming enzymes; and (ii) predicting enzymatic activity based on chemical structural similarities between lignin- and plastics-derived chemical compounds, using Simplified Molecular-Input Line-Entry System and Tanimoto coefficients. Enzymes involved in the depolymerization of polyurethane and polybutylene adipate terephthalate were found to be encoded by Ps. protegens, which could catabolize phthalates and terephthalic acid. The axenic culture of Ps. protegens grew on polyhydroxyalkanoate (PHA) nanoparticles and might be a suitable species for the industrial production of PHAs in the context of lignin and plastic upcycling.
Collapse
Affiliation(s)
- Carlos Andrés Díaz Rodríguez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Díaz-García
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Chemical and Biological Engineering, Advanced Biomanufacturing Centre, University of Sheffield, Sheffield, UK
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Katherine Herrera
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig University of Technology, Braunschweig, Germany
| | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
6
|
Ma L, Wang X, Zhou J, Lü X. Degradation of switchgrass by Bacillus subtilis 1AJ3 and expression of a beta-glycoside hydrolase. Front Microbiol 2022; 13:922371. [PMID: 35966659 PMCID: PMC9374367 DOI: 10.3389/fmicb.2022.922371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing demand for carbon neutrality has led to the development of new techniques and modes of low carbon production. The utilization of microbiology to convert low-cost renewable resources into more valuable chemicals is particularly important. Here, we investigated the ability of a cellulolytic bacterium, Bacillus subtilis 1AJ3, in switchgrass lignocellulose degradation. After 5 days of culture with the strain under 37°C, cellulose, xylan, and acid-insoluble lignin degradation rates were 16.13, 14.24, and 13.91%, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis and field emission scanning electron microscopy (FE-SEM) indicated that the lignin and surface of switchgrass were degraded after incubation with the bacterial strain. Strain 1AJ3 can grow well below 60°C, which satisfies the optimum temperature (50°C) condition of most cellulases; subsequent results emphasize that acid-heat incubation conditions increase the reducing sugar content in a wide range of cellulosic biomass degraded by B. subtilis 1AJ3. To obtain more reducing sugars, we focused on β-glycoside hydrolase, which plays an important role in last steps of cellulose degradation to oligosaccharides. A β-glycoside hydrolase (Bgl-16A) was characterized by cloning and expression in Escherichia coli BL21 and further determined to belong to glycoside hydrolase (GH) 16 family. The Bgl-16A had an enzymatic activity of 365.29 ± 10.43 U/mg, and the enzyme's mode of action was explained by molecular docking. Moreover, the critical influence on temperature (50°C) of Bgl-16A also explained the high-efficiency degradation of biomass by strain under acid-heat conditions. In terms of potential applications, both the strain and the recombinant enzyme showed that coffee grounds would be a suitable and valuable substrate. This study provides a new understanding of cellulose degradation by B. subtilis 1AJ3 that both the enzyme action mode and optimum temperature limitation by cellulases could impact the degradation. It also gave new sight to unique advantage utilization in the industrial production of green manufacturing.
Collapse
Affiliation(s)
- Lingling Ma
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xin Wang
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xin Lü
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
7
|
Influence of Sugarcane Variety on Rhizosphere Microbiota Under Irrigated and Water-Limiting Conditions. Curr Microbiol 2022; 79:246. [PMID: 35834135 DOI: 10.1007/s00284-022-02946-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
Drought is one of the main problems linked to climate change that is faced by agriculture, affecting various globally important crops, including sugarcane. Environmentally sustainable strategies have been sought to mitigate the effects of climate change on crops. Among them, the use of beneficial microorganisms offers a promising approach. However, it is still necessary to understand the mechanisms that regulate plant-microorganism interactions, in normal situations and under stress. In this work, the rhizosphere metagenomes of two sugarcane varieties, one resistant and the other susceptible to drought, were compared under normal conditions and under water-limiting conditions. The results showed that for the drought-resistant sugarcane variety, bacteria belonging to the order Sphingomonadales and the family Xanthomonadaceae presented increased activities in terms of mobility, colonization, and cell growth. In contrast, the rhizosphere associated with the drought-sensitive variety exhibited increases of bacteria belonging to the family Polyangiaceae, and the genus Streptomyces, with modifications in DNA metabolism and ribosome binding proteins. The results pointed to variation in the rhizosphere microbiota that was modulated by the host plant genotype, revealing potential bacterial candidates that could be recruited to assist plants during water-limiting conditions.
Collapse
|
8
|
Lewin GR, Davis NM, McDonald BR, Book AJ, Chevrette MG, Suh S, Boll A, Currie CR. Long-Term Cellulose Enrichment Selects for Highly Cellulolytic Consortia and Competition for Public Goods. mSystems 2022; 7:e0151921. [PMID: 35258341 PMCID: PMC9040578 DOI: 10.1128/msystems.01519-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
The complexity of microbial communities hinders our understanding of how microbial diversity and microbe-microbe interactions impact community functions. Here, using six independent communities originating from the refuse dumps of leaf-cutter ants and enriched using the plant polymer cellulose as the sole source of carbon, we examine how changes in bacterial diversity and interactions impact plant biomass decomposition. Over up to 60 serial transfers (∼8 months) using Whatman cellulose filter paper, cellulolytic ability increased and then stabilized in four enrichment lines and was variable in two lines. Bacterial community characterization using 16S rRNA gene amplicon sequencing showed community succession differed between the highly cellulolytic enrichment lines and those that had slower and more variable cellulose degradation rates. Metagenomic and metatranscriptomic analyses revealed that Cellvibrio and/or Cellulomonas dominated each enrichment line and produced the majority of cellulase enzymes, while diverse taxa were retained within these communities over the duration of transfers. Interestingly, the less cellulolytic communities had a higher diversity of organisms competing for the cellulose breakdown product cellobiose, suggesting that cheating slowed cellulose degradation. In addition, we found competitive exclusion as an important factor shaping all of the communities, with a negative correlation of Cellvibrio and Cellulomonas abundance within individual enrichment lines and the expression of genes associated with the production of secondary metabolites, toxins, and other antagonistic compounds. Our results provide insights into how microbial diversity and competition affect the stability and function of cellulose-degrading communities. IMPORTANCE Microbial communities are a key driver of the carbon cycle through the breakdown of complex polysaccharides in diverse environments including soil, marine systems, and the mammalian gut. However, due to the complexity of these communities, the species-species interactions that impact community structure and ultimately shape the rate of decomposition are difficult to define. Here, we performed serial enrichment on cellulose using communities inoculated from leaf-cutter ant refuse dumps, a cellulose-rich environment. By concurrently tracking cellulolytic ability and community composition and through metagenomic and metatranscriptomic sequencing, we analyzed the ecological dynamics of the enrichment lines. Our data suggest that antagonism is prevalent in these communities and that competition for soluble sugars may slow degradation and lead to community instability. Together, these results help reveal the relationships between competition and polysaccharide decomposition, with implications in diverse areas ranging from microbial community ecology to cellulosic biofuels production.
Collapse
Affiliation(s)
- Gina R. Lewin
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nicole M. Davis
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Bradon R. McDonald
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Adam J. Book
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Marc G. Chevrette
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Steven Suh
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Ardina Boll
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Cameron R. Currie
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Zhou Z, Wu H, Li D, Zeng W, Huang J, Wu Z. Comparison of gut microbiome in the Chinese mud snail ( Cipangopaludina chinensis) and the invasive golden apple snail ( Pomacea canaliculata). PeerJ 2022; 10:e13245. [PMID: 35402093 PMCID: PMC8992660 DOI: 10.7717/peerj.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 01/13/2023] Open
Abstract
Background Gut microbiota play a critical role in nutrition absorption and environmental adaptation and can affect the biological characteristics of host animals. The invasive golden apple snail (Pomacea canaliculata) and native Chinese mud snail (Cipangopaludina chinensis) are two sympatric freshwater snails with similar ecological niche in southern China. However, gut microbiota comparison of interspecies remains unclear. Comparing the difference of gut microbiota between the invasive snail P. canaliculata and native snail C. chinensis could provide new insight into the invasion mechanism of P.canaliculata at the microbial level. Methods Gut samples from 20 golden apple snails and 20 Chinese mud snails from wild freshwater habitats were collected and isolated. The 16S rRNA gene V3-V4 region of the gut microbiota was analyzed using high throughput Illumina sequencing. Results The gut microbiota dominantly composed of Proteobacteria, Bacteroidetes, Firmicutes and Epsilonbacteraeota at phylum level in golden apple snail. Only Proteobacteria was the dominant phylum in Chinese mud snail. Alpha diversity analysis (Shannon and Simpson indices) showed there were no significant differences in gut microbial diversity, but relative abundances of the two groups differed significantly (P < 0.05). Beta diversity analysis (Bray Curtis and weighted UniFrac distance) showed marked differences in the gut microbiota structure (P < 0.05). Unique or high abundance microbial taxa were more abundant in the invasive snail compared to the native form. Functional prediction analysis indicated that the relative abundances of functions differed significantly regarding cofactor prosthetic group electron carrier and vitamin biosynthesis, amino acid biosynthesis, and nucleoside and nucleotide biosynthesis (P < 0.05). These results suggest an enhanced potential to adapt to new habitats in the invasive snail.
Collapse
Affiliation(s)
- Zihao Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Hongying Wu
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Dinghong Li
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Wenlong Zeng
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinlong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China,College of Life Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
10
|
Borjigin Q, Zhang B, Yu X, Gao J, Zhang X, Qu J, Ma D, Hu S, Han S. Metagenomics study to compare the taxonomic composition and metabolism of a lignocellulolytic microbial consortium cultured in different carbon conditions. World J Microbiol Biotechnol 2022; 38:78. [PMID: 35325312 DOI: 10.1007/s11274-022-03260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
A lignocellulolytic microbial consortium holds promise for the in situ biodegradation of crop straw and the comprehensive and effective utilization of agricultural waste. In this study, we applied metagenomics technology to comprehensively explore the metabolic functional potential and taxonomic diversity of the microbial consortia CS (cultured on corn stover) and FP (cultured on filter paper). Analyses of the data on metagenomics taxonomic affiliations revealed considerable differences in the taxonomic composition and carbohydrate-active enzymes profile of the microbial consortia CS and FP. Pseudomonas, Dysgonomonas and Sphingobacterium in CS and Cellvibrio and Pseudomonas in FP had a much wider distribution of lignocellulose degradative ability. The genes for more lignocellulose degradative enzymes were detected when the relatively simple substrate filter paper was used as the carbon source. Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses revealed considerable levels of similarity, and carbohydrate metabolic and amino acid metabolic pathways were the most enriched in CS and FP, respectively. The mechanism used by the two microbial consortia to degrade lignocellulose was similar, but the annotation of quantity of genes indicated that they are diverse and vary greatly. These data underlie the interactions between microorganisms and the synergism of enzymes during the degradative process of lignocellulose under different substrates and suggest the development of potential microbial resources.
Collapse
Affiliation(s)
- Qinggeer Borjigin
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China.,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Bizhou Zhang
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, No.22, ZhaoJun Road, Hohhot, 010031, China
| | - Xiaofang Yu
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China. .,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.
| | - Julin Gao
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China. .,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.
| | - Xin Zhang
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Jiawei Qu
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China.,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Daling Ma
- Agricultural College, Inner Mongolia Agricultural University, No. 275, XinJian East Street, Hohhot, 010019, China.,Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China
| | - Shuping Hu
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.,Vocational and Technical College, Inner Mongolia Agricultural University, Altan street, Baotou, 014109, China
| | - Shengcai Han
- Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, No. 275, XinJian East Street, Hohhot, 010019, China.,Hortlculture and Plant Protection College, Inner Mongolia Agricultural University, No. 29, Eerduosi East Street, Hohhot, 010019, China
| |
Collapse
|
11
|
Kabaivanova L, Hubenov V, Dimitrova L, Simeonov I, Wang H, Petrova P. Archaeal and Bacterial Content in a Two-Stage Anaerobic System for Efficient Energy Production from Agricultural Wastes. Molecules 2022; 27:1512. [PMID: 35268611 PMCID: PMC8911581 DOI: 10.3390/molecules27051512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Anaerobic digestion (AD) is a microbially-driven process enabling energy production. Microorganisms are the core of anaerobic digesters and play an important role in the succession of hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes. The diversity of participating microbial communities can provide new information on digester performance for biomass valorization and biofuel production. In this study anaerobic systems were used, operating under mesophilic conditions that realized biodegradation processes of waste wheat straw pretreated with NaOH-a renewable source for hydrogen and methane production. These processes could be managed and optimized for hydrogen and methane separately but combining them in a two-stage system can lead to higher yields and a positive energy balance. The aim of the study was to depict a process of biohydrogen production from lignocellulosic waste followed by a second one leading to the production of biomethane. Archaeal and bacterial consortia in a two-stage system operating with wheat straw were identified for the first time and the role of the most important representatives was elucidated. The mixed cultures were identified by the molecular-biological methods of metagenomics. The results showed that biohydrogen generation is most probably due to the presence of Proteiniphilum saccharofermentans, which was 28.2% to 45.4% of the microbial community in the first and the second bioreactor, respectively. Archaeal representatives belonging to Methanobacterium formicicum (0.71% of the community), Methanosarcina spelaei (0.03%), Methanothrix soehngenii (0.012%), and Methanobacterium beijingense (0.01%) were proven in the methane-generating reactor. The correlation between substrate degradation and biogas accumulation was calculated, together with the profile of fatty acids as intermediates produced during the processes. The hydrogen concentration in the biogas reached 14.43%, and the Methane concentration was 69%. Calculations of the energy yield during the two-stage process showed 1195.89 kWh·t-1 compared to a 361.62 kWh·t-1 cumulative yield of energy carrier for a one-stage process.
Collapse
Affiliation(s)
- Lyudmila Kabaivanova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.H.); (L.D.); (I.S.)
| | - Venelin Hubenov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.H.); (L.D.); (I.S.)
| | - Lyudmila Dimitrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.H.); (L.D.); (I.S.)
| | - Ivan Simeonov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.H.); (L.D.); (I.S.)
| | - Haoping Wang
- French-Chinese Laboratory LaFCAS, School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China;
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.H.); (L.D.); (I.S.)
| |
Collapse
|
12
|
Mendes IV, Garcia MB, Bitencourt ACA, Santana RH, Lins PDC, Silveira R, Simmons BA, Gladden JM, Kruger RH, Quirino BF. Bacterial diversity dynamics in microbial consortia selected for lignin utilization. PLoS One 2021; 16:e0255083. [PMID: 34516585 PMCID: PMC8437272 DOI: 10.1371/journal.pone.0255083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/10/2021] [Indexed: 01/23/2023] Open
Abstract
Lignin is nature's largest source of phenolic compounds. Its recalcitrance to enzymatic conversion is still a limiting step to increase the value of lignin. Although bacteria are able to degrade lignin in nature, most studies have focused on lignin degradation by fungi. To understand which bacteria are able to use lignin as the sole carbon source, natural selection over time was used to obtain enriched microbial consortia over a 12-week period. The source of microorganisms to establish these microbial consortia were commercial and backyard compost soils. Cultivation occurred at two different temperatures, 30°C and 37°C, in defined culture media containing either Kraft lignin or alkaline-extracted lignin as carbon source. iTag DNA sequencing of bacterial 16S rDNA gene was performed for each of the consortia at six timepoints (passages). The initial bacterial richness and diversity of backyard compost soil consortia was greater than that of commercial soil consortia, and both parameters decreased after the enrichment protocol, corroborating that selection was occurring. Bacterial consortia composition tended to stabilize from the fourth passage on. After the enrichment protocol, Firmicutes phylum bacteria were predominant when lignin extracted by alkaline method was used as a carbon source, whereas Proteobacteria were predominant when Kraft lignin was used. Bray-Curtis dissimilarity calculations at genus level, visualized using NMDS plots, showed that the type of lignin used as a carbon source contributed more to differentiate the bacterial consortia than the variable temperature. The main known bacterial genera selected to use lignin as a carbon source were Altererythrobacter, Aminobacter, Bacillus, Burkholderia, Lysinibacillus, Microvirga, Mycobacterium, Ochrobactrum, Paenibacillus, Pseudomonas, Pseudoxanthomonas, Rhizobiales and Sphingobium. These selected bacterial genera can be of particular interest for studying lignin degradation and utilization, as well as for lignin-related biotechnology applications.
Collapse
Affiliation(s)
- Isis Viana Mendes
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | - Mariana Botelho Garcia
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Ana Carolina Araújo Bitencourt
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | | | - Philippe de Castro Lins
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
| | | | - Blake A. Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California, United States of America
| | - John M. Gladden
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, California, United States of America
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California, United States of America
| | | | - Betania Ferraz Quirino
- Embrapa Agroenergia, Parque Estação Biológica (PqEB), PqEB s/n, Brasília, DF, Brazil
- Universidade de Brasília, Brasília, DF, Brazil
- Universidade Católica de Brasília, Brasília, DF, Brazil
- * E-mail: ,
| |
Collapse
|
13
|
Succession of Intestinal Microbial Structure of Giant Pandas ( Ailuropoda melanoleuca) during Different Developmental Stages and Its Correlation with Cellulase Activity. Animals (Basel) 2021; 11:ani11082358. [PMID: 34438815 PMCID: PMC8388744 DOI: 10.3390/ani11082358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Giant pandas (Ailuropoda melanoleuca) are endangered animals and are uniquely inhabitant in China. These rare animals have gradually developed bamboo-eating adaptability through persistent evolution. Intestinal microbes play an important role in the digestion, absorption, metabolism, and development of giant pandas especially by facilizing the degradation of bamboo polysaccharides such as cellulose. Currently, genes directly related to cellulose degradation have not been identified in the genome of giant panda, and cellulose digestion is therefore likely dependent on intestinal microbes. This study analyzed the changes in intestinal microbial structure of giant pandas (cubs, sub-adults, and adults) in different developmental stages. The impact was also assessed with the changes in food composition probed into the succession regularity of intestinal microbes and the activities of intestinal flora on the digestion and utilization of cellulose in bamboo. Abstract The interaction between intestinal microbial flora and giant pandas (Ailuropoda melanoleuca) is indispensable for the healthy development of giant pandas. In this study, we analysed the diversity of bacteria and fungi in the intestines of six giant pandas (two pandas in each development stage) with a high-throughput sequencing technique to expand the relative variation in abundance of dominant microbes and potential cellulose-degradation genera in the intestines of the giant pandas and to explore the correlation between dominant microbial genera in the intestines and cellulose digestion activities of giant pandas. The results showed that the intestinal bacterial diversity of young giant pandas was higher than that of sub-adult and adult giant pandas, and Shannon’s diversity index was about 2.0. The intestinal bacterial diversity of giant pandas from sub-adult to adult (mature stage) stage showed an increasing trend, but the intestinal fungal diversity showed no considerable regular relations with their ages. The microbial composition and abundance of giant pandas changed in different developmental stages. Pearson correlation analysis and path analysis showed that there was a close relationship between the dominant microbes in the intestines of giant pandas, and the interaction between microbial genera might affect the cellulose digestion ability of giant pandas. Generally, the digestibility of cellulose degraders in pandas was still insufficient, with low enzymic activity and immature microbial structure. Therefore, the utilization and digestion of bamboo cellulose still might not be a main source of energy for pandas.
Collapse
|
14
|
Weiss B, Souza ACO, Constancio MTL, Alvarenga DO, Pylro VS, Alves LMC, Varani AM. Unraveling a Lignocellulose-Decomposing Bacterial Consortium from Soil Associated with Dry Sugarcane Straw by Genomic-Centered Metagenomics. Microorganisms 2021; 9:microorganisms9050995. [PMID: 34063014 PMCID: PMC8170896 DOI: 10.3390/microorganisms9050995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Second-generation biofuel production is in high demand, but lignocellulosic biomass’ complexity impairs its use due to the vast diversity of enzymes necessary to execute the complete saccharification. In nature, lignocellulose can be rapidly deconstructed due to the division of biochemical labor effectuated in bacterial communities. Here, we analyzed the lignocellulolytic potential of a bacterial consortium obtained from soil and dry straw leftover from a sugarcane milling plant. This consortium was cultivated for 20 weeks in aerobic conditions using sugarcane bagasse as a sole carbon source. Scanning electron microscopy and chemical analyses registered modification of the sugarcane fiber’s appearance and biochemical composition, indicating that this consortium can deconstruct cellulose and hemicellulose but no lignin. A total of 52 metagenome-assembled genomes from eight bacterial classes (Actinobacteria, Alphaproteobacteria, Bacilli, Bacteroidia, Cytophagia, Gammaproteobacteria, Oligoflexia, and Thermoleophilia) were recovered from the consortium, in which ~46% of species showed no relevant modification in their abundance during the 20 weeks of cultivation, suggesting a mostly stable consortium. Their CAZymes repertoire indicated that many of the most abundant species are known to deconstruct lignin (e.g., Chryseobacterium) and carry sequences related to hemicellulose and cellulose deconstruction (e.g., Chitinophaga, Niastella, Niabella, and Siphonobacter). Taken together, our results unraveled the bacterial diversity, enzymatic potential, and effectiveness of this lignocellulose-decomposing bacterial consortium.
Collapse
Affiliation(s)
- Bruno Weiss
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Anna Carolina Oliveira Souza
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Milena Tavares Lima Constancio
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Danillo Oliveira Alvarenga
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
| | - Victor S. Pylro
- Microbial Ecology and Bioinformatics Laboratory, Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais 37200-000, Brazil;
| | - Lucia M. Carareto Alves
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
- Correspondence: (L.M.C.A.); (A.M.V.)
| | - Alessandro M. Varani
- Departament of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil; (B.W.); (A.C.O.S.); (M.T.L.C.); (D.O.A.)
- Correspondence: (L.M.C.A.); (A.M.V.)
| |
Collapse
|
15
|
Silva JP, Ticona ARP, Hamann PRV, Quirino BF, Noronha EF. Deconstruction of Lignin: From Enzymes to Microorganisms. Molecules 2021; 26:2299. [PMID: 33921125 PMCID: PMC8071518 DOI: 10.3390/molecules26082299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Lignocellulosic residues are low-cost abundant feedstocks that can be used for industrial applications. However, their recalcitrance currently makes lignocellulose use limited. In natural environments, microbial communities can completely deconstruct lignocellulose by synergistic action of a set of enzymes and proteins. Microbial degradation of lignin by fungi, important lignin degraders in nature, has been intensively studied. More recently, bacteria have also been described as able to break down lignin, and to have a central role in recycling this plant polymer. Nevertheless, bacterial deconstruction of lignin has not been fully elucidated yet. Direct analysis of environmental samples using metagenomics, metatranscriptomics, and metaproteomics approaches is a powerful strategy to describe/discover enzymes, metabolic pathways, and microorganisms involved in lignin breakdown. Indeed, the use of these complementary techniques leads to a better understanding of the composition, function, and dynamics of microbial communities involved in lignin deconstruction. We focus on omics approaches and their contribution to the discovery of new enzymes and reactions that impact the development of lignin-based bioprocesses.
Collapse
Affiliation(s)
- Jéssica P. Silva
- Enzymology Laboratory, Cell Biology Department, University of Brasilia, 70910-900 Brasília, Brazil; (J.P.S.); (A.R.P.T.); (P.R.V.H.)
| | - Alonso R. P. Ticona
- Enzymology Laboratory, Cell Biology Department, University of Brasilia, 70910-900 Brasília, Brazil; (J.P.S.); (A.R.P.T.); (P.R.V.H.)
| | - Pedro R. V. Hamann
- Enzymology Laboratory, Cell Biology Department, University of Brasilia, 70910-900 Brasília, Brazil; (J.P.S.); (A.R.P.T.); (P.R.V.H.)
| | - Betania F. Quirino
- Genetics and Biotechnology Laboratory, Embrapa-Agroenergy, 70770-901 Brasília, Brazil;
| | - Eliane F. Noronha
- Enzymology Laboratory, Cell Biology Department, University of Brasilia, 70910-900 Brasília, Brazil; (J.P.S.); (A.R.P.T.); (P.R.V.H.)
| |
Collapse
|
16
|
Xiong YI, Zhao Y, Ni K, Shi Y, Xu Q. Characterization of Ligninolytic Bacteria and Analysis of Alkali-Lignin Biodegradation Products. Pol J Microbiol 2021; 69:339-347. [PMID: 33574863 PMCID: PMC7810122 DOI: 10.33073/pjm-2020-037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/05/2022] Open
Abstract
Ligninolytic bacteria degrading lignin were isolates and identified, and their biodegradation mechanism of alkaline-lignin was investigated. Four strains with lignin degradation capability were screened and identified from the soil, straw, and silage based on their decolorizing capacity of aniline blue and colony size on alkaline-lignin medium. The degradation ratio of Bacillus aryabhattai BY5, Acinetobacter johnsonii LN2, Acinetobacter lwoffii LN4, and Micrococcus yunnanensis CL32 have been assayed using alkaline-lignin as the unique carbon source. Further, the Lip (lignin peroxidase) and Mnp (manganese peroxidase) activities of strains were investigated. Lip activity of A. lwoffii LN4 was highest after 72 h of incubation and reached 7151.7 U · l-1. Mnp activity of M. yunnanensis CL32 was highest after 48 h and reached 12533 U · l-1. The analysis of alkaline-lignin degradation products by GC-MS revealed that the strains screened could utilize aromatic esters compounds such as dibutyl phthalate (DBP), and decomposite monocyclic aromatic compounds through the DBP aerobic metabolic pathway. The results indicate that B. aryabhattai BY5, A. johnsonii LN2, A. lwoffii LN4, and M. yunnanensis CL32 have high potential to degrade alkaline-lignin, and might utilize aromatic compounds by DBP aerobic metabolic pathway in the process of lignin degradation.
Collapse
Affiliation(s)
- Y I Xiong
- College of Grassland Science, Shanxi Agricultural University, Taigu, China.,College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yaru Zhao
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yue Shi
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| | - Qingfang Xu
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
17
|
Dilution-to-Stimulation/Extinction Method: a Combination Enrichment Strategy To Develop a Minimal and Versatile Lignocellulolytic Bacterial Consortium. Appl Environ Microbiol 2021; 87:AEM.02427-20. [PMID: 33127812 PMCID: PMC7783344 DOI: 10.1128/aem.02427-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The significance of our study mainly lies in the development of a combined top-down enrichment strategy (i.e., dilution to stimulation coupled to dilution to extinction) to build a minimal and versatile lignocellulolytic microbial consortium. We demonstrated that mainly two selectively enriched bacterial species (Pseudomonas sp. and Paenibacillus sp.) are required to drive the effective degradation of plant polymers. Our findings can guide the design of a synthetic bacterial consortium that could improve saccharification (i.e., the release of sugars from agricultural plant residues) processes in biorefineries. In addition, they can help to expand our ecological understanding of plant biomass degradation in enriched bacterial systems. The engineering of complex communities can be a successful path to understand the ecology of microbial systems and improve biotechnological processes. Here, we developed a strategy to assemble a minimal and effective lignocellulolytic microbial consortium (MELMC) using a sequential combination of dilution-to-stimulation and dilution-to-extinction approaches. The consortium was retrieved from Andean forest soil and selected through incubation in liquid medium with a mixture of three types of agricultural plant residues. After the dilution-to-stimulation phase, approximately 50 bacterial sequence types, mostly belonging to the Sphingobacteriaceae, Enterobacteriaceae, Pseudomonadaceae, and Paenibacillaceae, were significantly enriched. The dilution-to-extinction method demonstrated that only eight of the bacterial sequence types were necessary to maintain microbial growth and plant biomass consumption. After subsequent stabilization, only two bacterial species (Pseudomonas sp. and Paenibacillus sp.) became highly abundant (>99%) within the MELMC, indicating that these are the key players in degradation. Differences in the composition of bacterial communities between biological replicates indicated that selection, sampling, and/or priority effects could shape the consortium structure. The MELMC can degrade up to ∼13% of corn stover, consuming mostly its (hemi)cellulosic fraction. Tests with chromogenic substrates showed that the MELMC secretes an array of endoenzymes able to degrade xylan, arabinoxylan, carboxymethyl cellulose, and wheat straw. Additionally, the metagenomic profile inferred from the phylogenetic composition along with an analysis of carbohydrate-active enzymes of 20 bacterial genomes support the potential of the MELMC to deconstruct plant polysaccharides. This capacity was mainly attributed to the presence of Paenibacillus sp. IMPORTANCE The significance of our study mainly lies in the development of a combined top-down enrichment strategy (i.e., dilution to stimulation coupled to dilution to extinction) to build a minimal and versatile lignocellulolytic microbial consortium. We demonstrated that mainly two selectively enriched bacterial species (Pseudomonas sp. and Paenibacillus sp.) are required to drive the effective degradation of plant polymers. Our findings can guide the design of a synthetic bacterial consortium that could improve saccharification (i.e., the release of sugars from agricultural plant residues) processes in biorefineries. In addition, they can help to expand our ecological understanding of plant biomass degradation in enriched bacterial systems.
Collapse
|
18
|
Díaz-García L, Bugg TDH, Jiménez DJ. Exploring the Lignin Catabolism Potential of Soil-Derived Lignocellulolytic Microbial Consortia by a Gene-Centric Metagenomic Approach. MICROBIAL ECOLOGY 2020; 80:885-896. [PMID: 32572536 DOI: 10.1007/s00248-020-01546-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 05/25/2023]
Abstract
An exploration of the ligninolytic potential of lignocellulolytic microbial consortia can improve our understanding of the eco-enzymology of lignin conversion in nature. In this study, we aimed to detect enriched lignin-transforming enzymes on metagenomes from three soil-derived microbial consortia that were cultivated on "pre-digested" plant biomass (wheat straw, WS1-M; switchgrass, SG-M; and corn stover, CS-M). Of 60 selected enzyme-encoding genes putatively involved in lignin catabolism, 20 genes were significantly abundant in WS1-M, CS-M, and/or SG-M consortia compared with the initial forest soil inoculum metagenome (FS1). These genes could be involved in lignin oxidation (e.g., superoxide dismutases), oxidative stress responses (e.g., catalase/peroxidases), generation of protocatechuate (e.g., vanAB genes), catabolism of gentisate, catechol and 3-phenylpropionic acid (e.g., gentisate 1,2-dioxygenases, muconate cycloisomerases, and hcaAB genes), the beta-ketoadipate pathway (e.g., pcaIJ genes), and tolerance to lignocellulose-derived inhibitors (e.g., thymidylate synthases). The taxonomic affiliation of 22 selected lignin-transforming enzymes from WS1-M and CS-M consortia metagenomes revealed that Pseudomonadaceae, Alcaligenaceae, Sphingomonadaceae, Caulobacteraceae, Comamonadaceae, and Xanthomonadaceae are the key bacterial families in the catabolism of lignin. A predictive "model" was sketched out, where each microbial population has the potential to metabolize an array of aromatic compounds through different pathways, suggesting that lignin catabolism can follow a "task division" strategy. Here, we have established an association between functions and taxonomy, allowing a better understanding of lignin transformations in soil-derived lignocellulolytic microbial consortia, and pinpointing some bacterial taxa and catabolic genes as ligninolytic trait-markers.
Collapse
Affiliation(s)
- Laura Díaz-García
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | | | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
19
|
Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium. Appl Environ Microbiol 2020; 86:AEM.00199-20. [PMID: 32680862 PMCID: PMC7480376 DOI: 10.1128/aem.00199-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
The lignocellulolytic ERAC displays a unique set of plant polysaccharide-degrading enzymes (with multimodular characteristics), cellulosomal complexes, and PULs. The MAGs described here represent an expansion of the genetic content of rumen bacterial genomes dedicated to plant polysaccharide degradation, therefore providing a valuable resource for the development of biocatalytic toolbox strategies to be applied to lignocellulose-based biorefineries. Lignocellulose is one of the most abundant renewable carbon sources, representing an alternative to petroleum for the production of fuel and chemicals. Nonetheless, the lignocellulose saccharification process, to release sugars for downstream applications, is one of the most crucial factors economically challenging to its use. The synergism required among the various carbohydrate-active enzymes (CAZymes) for efficient lignocellulose breakdown is often not satisfactorily achieved with an enzyme mixture from a single strain. To overcome this challenge, enrichment strategies can be applied to develop microbial communities with an efficient CAZyme arsenal, incorporating complementary and synergistic properties, to improve lignocellulose deconstruction. We report a comprehensive and deep analysis of an enriched rumen anaerobic consortium (ERAC) established on sugarcane bagasse (SB). The lignocellulolytic abilities of the ERAC were confirmed by analyzing the depolymerization of bagasse by scanning electron microscopy, enzymatic assays, and mass spectrometry. Taxonomic analysis based on 16S rRNA sequencing elucidated the community enrichment process, which was marked by a higher abundance of Firmicutes and Synergistetes species. Shotgun metagenomic sequencing of the ERAC disclosed 41 metagenome-assembled genomes (MAGs) harboring cellulosomes and polysaccharide utilization loci (PULs), along with a high diversity of CAZymes. The amino acid sequences of the majority of the predicted CAZymes (60% of the total) shared less than 90% identity with the sequences found in public databases. Additionally, a clostridial MAG identified in this study produced proteins during consortium development with scaffoldin domains and CAZymes appended to dockerin modules, thus representing a novel cellulosome-producing microorganism. IMPORTANCE The lignocellulolytic ERAC displays a unique set of plant polysaccharide-degrading enzymes (with multimodular characteristics), cellulosomal complexes, and PULs. The MAGs described here represent an expansion of the genetic content of rumen bacterial genomes dedicated to plant polysaccharide degradation, therefore providing a valuable resource for the development of biocatalytic toolbox strategies to be applied to lignocellulose-based biorefineries.
Collapse
|
20
|
Unraveling the camel rumen microbiome through metaculturomics approach for agriculture waste hydrolytic potential. Arch Microbiol 2020; 203:107-123. [PMID: 32772117 DOI: 10.1007/s00203-020-02010-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/13/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
Cellulose is the most abundant natural polymer present on Earth in the form of agriculture waste. Hydrolysis of agriculture waste for simple fermentable reducing sugars is the bottleneck in the area of biofuel generation and other value-added products. The present study aims to utilize the camel rumen as a bioreactor for potent cellulolytic and hemicellulolytic bacteria by altering the feed types with varying cellulosic concentrations. A total of 6716 bacterial cultures were subjected to three layers of screening, where plate zymography and chromophoric substrate screening served as primary screening method for cellulolytic and hemicellulolytic potential. The potential isolates were genetically grouped using RAPD, and 51 representative isolates from each group were subjected to molecular identification through 16S rDNA sequencing, followed by quantification of various cellulolytic and hemicellulolytic enzymes. Out of 51 potent isolates, 5 isolates had high endoglucanase activity ranging from 0.3 to 0.48 U/ml. The selected five key isolates identified as Pseudomonas, Paenibacillus, Citrobacter, Bacillus subtilis, and Enterobacter were employed for hydrolyzing the various agriculture residues and resulted in approximately 0.4 mg/ml of reducing sugar. Furthermore, the metaculturomics approach was implemented to deduce the total cultured diversity through 16S rRNA amplicon library sequencing. The metaculturomics data revealed the dominance of proteobacteria and unidentified bacterial population in all four feed types, which indicates the possibility of culturing novel cellulose-deconstructing bacteria. Moreover, the presence of diverse hydrolytic enzymes in cultured isolates supports the usage of these bacteria in bio-processing of agriculture waste residues and obtaining the biofuels and other value-added products.
Collapse
|
21
|
Abstract
The taxonomic and functional diversity inherent to the soil microbiome complicate assessments of the metabolic potential carried out by the community members. An alternative approach is to break down the soil microbiome into reduced-complexity subsets based on metabolic capacities (functional modules) prior to sequencing and analysis. Here, we demonstrate that this approach successfully identified specific phylogenetic and biochemical traits of the soil microbiome that otherwise remained hidden from a more top-down analysis. The soil microbiome represents one of the most complex microbial communities on the planet, encompassing thousands of taxa and metabolic pathways, rendering holistic analyses computationally intensive and difficult. Here, we developed an alternative approach in which the complex soil microbiome was broken into components (“functional modules”), based on metabolic capacities, for individual characterization. We hypothesized that reproducible, low-complexity communities that represent functional modules could be obtained through targeted enrichments and that, in combination, they would encompass a large extent of the soil microbiome diversity. Enrichments were performed on a starting soil inoculum with defined media based on specific carbon substrates, antibiotics, alternative electron acceptors under anaerobic conditions, or alternative growing conditions reflective of common field stresses. The resultant communities were evaluated through 16S rRNA amplicon sequencing. Less permissive modules (anaerobic conditions, complex polysaccharides, and certain stresses) resulted in more distinct community profiles with higher richness and more variability between replicates, whereas modules with simple substrates were dominated by fewer species and were more reproducible. Collectively, approximately 27% of unique taxa present in the liquid soil extract control were found across functional modules. Taxa that were underrepresented or undetected in the source soil were also enriched across the modules. Metatranscriptomic analyses were carried out on a subset of the modules to investigate differences in functional gene expression. These results demonstrate that by dissecting the soil microbiome into discrete components it is possible to obtain a more comprehensive view of the soil microbiome and its biochemical potential than would be possible using more holistic analyses.
Collapse
|
22
|
The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn Stover-based diet on the rumen bacterial community and metabolites of beef cattle. Sci Rep 2020; 10:10721. [PMID: 32612135 PMCID: PMC7329892 DOI: 10.1038/s41598-020-67716-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Improvement of the food value of rice straw is urgently required in rice crop growing areas to mitigate pollution caused by rice straw burning and enhance the supply of high-quality forages for ruminants. The aims of the present study were to compare the effects of fresh corn Stover and rice straw co-fermented with probiotics and enzymes on rumen fermentation and establish the feasibility of increasing the rice straw content in ruminant diets and, by extension, reducing air pollution caused by burning rice straw. Twenty Simmental hybrid beef cattle were randomly allotted to two groups with ten cattle per group. They were fed diets based either on rice straw co-fermented with probiotics and enzymes or fresh corn Stover for 90 days. Rumen fluid was sampled with an esophageal tube vacuum pump device from each animal on the mornings of days 30, 60, and 90. Bacterial diversity was evaluated by sequencing the V4–V5 region of the 16S rRNA gene. Metabolomes were analyzed by gas chromatography/time-of-flight mass spectrometry (GC–TOF/MS). Compared to cattle fed fresh corn Stover, those fed rice straw co-fermented with probiotics and enzymes had higher (P < 0.05) levels of acetic acid and propionate in rumen liquid at d 60 and d 90 respectively, higher (P < 0.05) abundances of the phyla Bacteroidetes and Fibrobacteres and the genera Ruminococcus, Saccharofermentans, Pseudobutyrivibrio, Treponema, Lachnoclostridium, and Ruminobacter, and higher (P < 0.05) concentrations of metabolites involved in metabolisms of amino acid, carbohydrate, and cofactors and vitamins. Relative to fresh corn Stover, rice straw co-fermented with probiotics and enzymes resulted in higher VFA concentrations, numbers of complex carbohydrate-decomposing and H2-utilizing bacteria, and feed energy conversion efficiency in the rumen.
Collapse
|
23
|
Liew KJ, Bruce NC, Sani RK, Chong CS, Yaakop AS, Shamsir MS, Goh KM. Global Transcriptomic Responses of Roseithermus sacchariphilus Strain RA in Media Supplemented with Beechwood Xylan. Microorganisms 2020; 8:E976. [PMID: 32610703 PMCID: PMC7409140 DOI: 10.3390/microorganisms8070976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 11/17/2022] Open
Abstract
The majority of the members in order Rhodothermales are underexplored prokaryotic extremophiles. Roseithermus, a new genus within Rhodothermales, was first described in 2019. Roseithermus sacchariphilus is the only species in this genus. The current report aims to evaluate the transcriptomic responses of R. sacchariphilus strain RA when cultivated on beechwood xylan. Strain RA doubled its growth in Marine Broth (MB) containing xylan compared to Marine Broth (MB) alone. Strain RA harbors 54 potential glycosyl hydrolases (GHs) that are affiliated with 30 families, including cellulases (families GH 3, 5, 9, and 44) and hemicellulases (GH 2, 10, 16, 29, 31,43, 51, 53, 67, 78, 92, 106, 113, 130, and 154). The majority of these GHs were upregulated when the cells were grown in MB containing xylan medium and enzymatic activities for xylanase, endoglucanase, β-xylosidase, and β-glucosidase were elevated. Interestingly, with the introduction of xylan, five out of six cellulolytic genes were upregulated. Furthermore, approximately 1122 genes equivalent to one-third of the total genes for strain RA were upregulated. These upregulated genes were mostly involved in transportation, chemotaxis, and membrane components synthesis.
Collapse
Affiliation(s)
- Kok Jun Liew
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
| | - Neil C. Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK;
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
| | - Mohd Shahir Shamsir
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Johor 84600, Malaysia
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (K.J.L.); (C.S.C.); (M.S.S.)
| |
Collapse
|
24
|
López-Mondéjar R, Algora C, Baldrian P. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 2019; 37:107374. [DOI: 10.1016/j.biotechadv.2019.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
|
25
|
Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, Mehlenbacher E, Patel CJ, Kostic AD. The Landscape of Genetic Content in the Gut and Oral Human Microbiome. Cell Host Microbe 2019; 26:283-295.e8. [PMID: 31415755 PMCID: PMC6716383 DOI: 10.1016/j.chom.2019.07.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/01/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
Despite substantial interest in the species diversity of the human microbiome and its role in disease, the scale of its genetic diversity, which is fundamental to deciphering human-microbe interactions, has not been quantified. Here, we conducted a cross-study meta-analysis of metagenomes from two human body niches, the mouth and gut, covering 3,655 samples from 13 studies. We found staggering genetic heterogeneity in the dataset, identifying a total of 45,666,334 non-redundant genes (23,961,508 oral and 22,254,436 gut) at the 95% identity level. Fifty percent of all genes were "singletons," or unique to a single metagenomic sample. Singletons were enriched for different functions (compared with non-singletons) and arose from sub-population-specific microbial strains. Overall, these results provide potential bases for the unexplained heterogeneity observed in microbiome-derived human phenotypes. One the basis of these data, we built a resource, which can be accessed at https://microbial-genes.bio.
Collapse
Affiliation(s)
- Braden T Tierney
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Zhen Yang
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada
| | - Jacob M Luber
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Marc Beaudin
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marsha C Wibowo
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Christina Baek
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Aleksandar D Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Abstract
Low-cost, high-throughput nucleic acid sequencing ushered the field of microbial ecology into a new era in which the microbial composition of nearly every conceivable environment on the planet is under examination. However, static "screenshots" derived from sequence-only approaches belie the underlying complexity of the microbe-microbe and microbe-host interactions occurring within these systems. Reductionist experimental models are essential to identify the microbes involved in interactions and to characterize the molecular mechanisms that manifest as complex host and environmental phenomena. Herein, we focus on three models (Bacillus-Streptomyces, Aliivibrio fischeri-Hawaiian bobtail squid, and gnotobiotic mice) at various levels of taxonomic complexity and experimental control used to gain molecular insight into microbe-mediated interactions. We argue that when studying microbial communities, it is crucial to consider the scope of questions that experimental systems are suited to address, especially for researchers beginning new projects. Therefore, we highlight practical applications, limitations, and tradeoffs inherent to each model.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer R Bratburd
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Reed M Stubbendieck
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Degradation profile of nixtamalized maize pericarp by the action of the microbial consortium PM-06. AMB Express 2019; 9:85. [PMID: 31197616 PMCID: PMC6565776 DOI: 10.1186/s13568-019-0812-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/08/2019] [Indexed: 11/25/2022] Open
Abstract
The nixtamalized maize pericarp (NMP) is a plentiful by-product of the tortilla industry and an important source of fermentable sugars. The aim of this study was to describe the degradation profile of NMP by the action of a consortium (PM-06) obtained from the native microbial community of this residue. The degradation was analyzed in terms of the changes in the community dynamics, production of enzymes (endo-xylanase and endo-cellulase), physicochemical parameters, and substrate chemical and microstructural characteristics, to understand the mechanisms behind the process. The consortium PM-06 degraded 86.8 ± 3.3% of NMP after 192 h of growth. Scanning electron microscopy images, and the composition and weight of the residual solids, showed that degradation was sequential starting with the consumption of hemicellulose. Xylanase was the highest enzyme activity produced, with a maximum value of 12.45 ± 0.03 U mL−1. There were fluctuations in the pH during the NMP degradation, starting with the acidification of the culture media and finishing with a pH close to 8.5. The most abundant species in the consortium, at the moment of maximum degradation activity, were Aneurinibacillus migulanus, Paenibacillus macerans, Bacillus coagulans, Microbacterium sp. LCT-H2, and Bacillus thuringiensis. The diversity of PM-06 provided metabolic abilities that in combination helped to produce an efficient process. The consortium PM-06 generated a set of different tools that worked coordinated to increase the substrate availability through the solubilization of components and elimination of structural diffusion barriers. This is the first report about the degradation of NMP using a microbial consortium.
Collapse
|