1
|
Han D, Ma S, He C, Yang Y, Li P, Lu L. Unveiling the genetic architecture and transmission dynamics of a novel multidrug-resistant plasmid harboring bla NDM-5 in E. Coli ST167: implications for antibiotic resistance management. BMC Microbiol 2024; 24:178. [PMID: 38783210 PMCID: PMC11112900 DOI: 10.1186/s12866-024-03333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The emergence of multidrug-resistant (MDR) Escherichia coli strains poses significant challenges in clinical settings, particularly when these strains harbor New Delhi metallo-ß-lactamase (NDM) gene, which confer resistance to carbapenems, a critical class of last-resort antibiotics. This study investigates the genetic characteristics and implications of a novel blaNDM-5-carrying plasmid pNDM-5-0083 isolated from an E. coli strain GZ04-0083 from clinical specimen in Zhongshan, China. RESULTS Phenotypic and genotypic evaluations confirmed that the E. coli ST167 strain GZ04-0083 is a multidrug-resistant organism, showing resistance to diverse classes of antibiotics including ß-lactams, carbapenems, fluoroquinolones, aminoglycosides, and sulfonamides, while maintaining susceptibility to monobactams. Investigations involving S1 pulsed-field gel electrophoresis, Southern blot analysis, and conjugation experiments, alongside genomic sequencing, confirmed the presence of the blaNDM-5 gene within a 146-kb IncFIB plasmid pNDM-5-0083. This evidence underscores a significant risk for the horizontal transfer of resistance genes among bacterial populations. Detailed annotations of genetic elements-such as resistance genes, transposons, and insertion sequences-and comparative BLAST analyses with other blaNDM-5-carrying plasmids, revealed a unique architectural configuration in the pNDM-5-0083. The MDR region of this plasmid shares a conserved gene arrangement (repA-IS15DIV-blaNDM-5-bleMBL-IS91-suI2-aadA2-dfrA12) with three previously reported plasmids, indicating a potential for dynamic genetic recombination and evolution within the MDR region. Additionally, the integration of virulence factors, including the iro and sit gene clusters and enolase, into its genetic architecture poses further therapeutic challenges by enhancing the strain's pathogenicity through improved host tissue colonization, immune evasion, and increased infection severity. CONCLUSIONS The detailed identification and characterization of pNDM-5-0083 enhance our understanding of the mechanisms facilitating the spread of carbapenem resistance. This study illuminates the intricate interplay among various genetic elements within the novel blaNDM-5-carrying plasmid, which are crucial for the stability and mobility of resistance genes across bacterial populations. These insights highlight the urgent need for ongoing surveillance and the development of effective strategies to curb the proliferation of antibiotic resistance.
Collapse
Affiliation(s)
- Dengke Han
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Suzhen Ma
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Chenhong He
- Department of Emergency, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Yuxing Yang
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, 20 DongDa Street, Fengtai District, Beijing, 100071, China
| | - Lanfen Lu
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China.
| |
Collapse
|
2
|
Fang Z, Zhao X, Zhang Z, Wu J, Cheng J, Lei D, Li N, Ge R, He QY, Sun X. Unveiling a novel mechanism for competitive advantage of ciprofloxacin-resistant bacteria in the environment through bacterial membrane vesicles. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133453. [PMID: 38246062 DOI: 10.1016/j.jhazmat.2024.133453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Ciprofloxacin (CIP) is a prevalent environmental contaminant that poses a high risk of antibiotic resistance. High concentrations of antibiotics can lead to the development of resistant bacteria with high fitness costs, which often face a competitive disadvantage. However, it is unclear whether low-cost resistant bacteria formed by exposure to sub-MIC CIP in the environment can evolve competitive mechanisms against sensitive Escherichia coli (SEN) other than stronger resistance to CIP. Our study exposed E. coli to sub-MIC CIP levels, resulting in the development of CIP-resistant E. coli (CIPr). In antibiotic-free co-culture assays, CIPr outcompeted SEN. This indicates that CIPr is very likely to continue to develop and spread in antibiotic-free environments such as drinking water and affect human health. Further mechanism investigation revealed that bacterial membrane vesicles (BMVs) in CIPr, functioning as substance delivery couriers, mediated a cleavage effect on SEN. Proteomic analysis identified Entericidin B (EcnB) within CIPr-BMVs as a key factor in this competitive interaction. RT-qPCR analysis showed that the transcription of its negative regulator ompR/envZ was down-regulated. Moreover, EcnB plays a crucial role in the development of CIP resistance, and some resistance-related proteins and pathways have also been discovered. Metabolomics analysis highlighted the ability of CIPr-BMVs to acidify SEN, increasing the lytic efficiency of EcnB through cationization. Overall, our study reveals the importance of BMVs in mediating bacterial resistance and competition, suggesting that regulating BMVs production may be a new strategy for controlling the spread of drug-resistant bacteria.
Collapse
Affiliation(s)
- Zuye Fang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Xinlu Zhao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Ziyuan Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiayi Wu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiliang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Lei
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Kruszewska-Naczk B, Grinholc M, Waleron K, Bandow JE, Rapacka-Zdończyk A. Can antimicrobial blue light contribute to resistance development? Genome-wide analysis revealed aBL-protective genes in Escherichia coli. Microbiol Spectr 2024; 12:e0249023. [PMID: 38063383 PMCID: PMC10782963 DOI: 10.1128/spectrum.02490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/24/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Increasing antibiotic resistance and the lack of new antibiotic-like compounds to combat bacterial resistance are significant problems of modern medicine. The development of new alternative therapeutic strategies is extremely important. Antimicrobial blue light (aBL) is an innovative approach to combat multidrug-resistant microorganisms. aBL has a multitarget mode of action; however, the full mechanism of aBL antibacterial action requires further investigation. In addition, the potential risk of resistance development to this treatment should be considered.
Collapse
Affiliation(s)
- Beata Kruszewska-Naczk
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße, Bochum, Germany
| | - Aleksandra Rapacka-Zdończyk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Engda T, Tessema B, Mesifin N, Nuru A, Belachew T, Moges F. Shiga toxin-producing Escherichia coli O157:H7 among diarrheic patients and their cattle in Amhara National Regional State, Ethiopia. PLoS One 2023; 18:e0295266. [PMID: 38127993 PMCID: PMC10734908 DOI: 10.1371/journal.pone.0295266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli O157:H7 (STEC O157:H7) is a zoonotic pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome worldwide. This study aimed to determine the prevalence, antibiotic susceptibility, and associated risk factors of STEC O157:H7 among diarrheic patients and their cattle. METHODS A cross-sectional study was conducted among diarrheic patients and their cattle in Amhara National Regional State, Ethiopia from December- 2020 to June- 2022. A total of 1,149 diarrheic patients and 229 cattle were included in the study. STEC O157:H7 detection was done using culture, latex agglutination test, and polymerase chain reaction on diarrheic stool samples and recto-anal mucosal swabs of cattle. Antibiotic susceptibility tests were performed using disk diffusion techniques. Risk factors association were identified using binary and multivariable logistic regression analysis. RESULTS The overall prevalence of STEC O157:H7 in diarrheic patients and their cattle was 11.1% (128/1149) and 14.4% (33/229) respectively. High percentage of the study subjects were found in under-five children (34.5%). Age less than 5 (AOR: 4.02, 95%CI:1.608-10.058,P = 0.003), and greater than 64 years old (AOR:3.36, 95% CI:1.254-8.986, P = 0.016), presence of diarrheic patient in the house (AOR:2.11, 95%CI:1.309-3.390, P = 0.002), availability of cattle in the house (AOR:2.52, 95%CI:1.261-5.049, P = 0.009), and habit of consuming raw foods (AOR:4.35, 95%CI:2.645-7.148, P = 0.000) were risk factors. Antibiotic resistance was shown in 109(85.2%), and 31(93.9%) isolates from diarrheic patients and their cattle respectively. The highest levels of antibiotic resistance were found to tetracycline (54.7%, 69.7%) in diarrheic patients and their cattle respectively. Multiple drug resistance was also observed among 56(43.8%) and 11(33.3%) isolates in diarrheic patients and their cattle respectively. CONCLUSION Our study showed high prevalence of STEC O157:H7 in diarrheic patients and their cattle. Therefore, health education should be given to the community on how to care for animals, proper sanitation, and the impact of raw food consumption.
Collapse
Affiliation(s)
- Tigist Engda
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Belay Tessema
- Faculty of Medicine, Institute of Medical Microbiology and Virology, University of Leipzig, Leipzig, Germany
| | - Nebiyu Mesifin
- Department of Internal Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Anwar Nuru
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Teshome Belachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Bibbal D, Ruiz P, Sapountzis P, Mazuy-Cruchaudet C, Loukiadis E, Auvray F, Forano E, Brugère H. Persistent Circulation of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 in Cattle Farms: Characterization of Enterohemorrhagic Escherichia coli O157:H7 Strains and Fecal Microbial Communities of Bovine Shedders and Non-shedders. Front Vet Sci 2022; 9:852475. [PMID: 35411306 PMCID: PMC8994043 DOI: 10.3389/fvets.2022.852475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Cattle are carriers, without clinical manifestations, of enterohemorrhagic Escherichia coli (EHEC) O157:H7 responsible for life-threatening infections in humans. A better identification of factors playing a role in maintaining persistence of such strains in cattle is required to develop more effective control measures. Hence, we conducted a study to identify farms with a persistent circulation of EHEC O157:H7. The EHEC O157:H7 herd status of 13 farms, which had previously provided bovine EHEC O157:H7 carriers at slaughter was investigated. Two farms were still housing positive young bulls, and this was true over a 1-year period. Only one fecal sample could be considered from a supershedder, and 60% of the carriers shed concentrations below 10 MPN/g. Moreover, EHEC O157:H7 represented minor subpopulations of E. coli. PFGE analysis of the EHEC O157:H7 strains showed that persistent circulation was due either to the persistence of a few predominant strains or to the repeated exposure of cattle to various strains. Finally, we compared fecal microbial communities of shedders (S) (n = 24) and non-shedders (NS) (n = 28), including 43 young bulls and nine cows, from one farm. Regarding alpha diversity, no significant difference between S vs. NS young bulls (n = 43) was observed. At the genus level, we identified 10 amplicon sequence variant (ASV) indicators of the S or NS groups. The bacterial indicators of S belonged to the family XIII UCG-001, Slackia, and Campylobacter genera, and Ruminococcaceae NK4A21A, Lachnospiraceae-UGC-010, and Lachnospiraceae-GCA-900066575 groups. The NS group indicator ASVs were affiliated to Pirellulaceae-1088-a5 gut group, Anaerovibrio, Victivallis, and Sellimonas genera. In conclusion, the characteristics enhancing the persistence of some predominant strains observed here should be explored further, and studies focused on mechanisms of competition among E. coli strains are also needed.
Collapse
Affiliation(s)
- Delphine Bibbal
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| | | | - Christine Mazuy-Cruchaudet
- Université de Lyon, VetAgro Sup, National Reference Laboratory for E. coli (including VTEC), Marcy l'Etoile, France.,Université de Lyon, Laboratoire d'Ecologie Microbienne de Lyon, CNRS, INRAE, Université de Lyon 1, VetAgro Sup, Microbial Ecology Laboratory, Research Group on Bacterial Opportunistic Pathogens and Environment, Villeurbanne, France
| | - Estelle Loukiadis
- Université de Lyon, VetAgro Sup, National Reference Laboratory for E. coli (including VTEC), Marcy l'Etoile, France.,Université de Lyon, Laboratoire d'Ecologie Microbienne de Lyon, CNRS, INRAE, Université de Lyon 1, VetAgro Sup, Microbial Ecology Laboratory, Research Group on Bacterial Opportunistic Pathogens and Environment, Villeurbanne, France
| | - Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Clermont-Ferrand, France
| | - Hubert Brugère
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
6
|
Black Z, Balta I, Black L, Naughton PJ, Dooley JSG, Corcionivoschi N. The Fate of Foodborne Pathogens in Manure Treated Soil. Front Microbiol 2021; 12:781357. [PMID: 34956145 PMCID: PMC8702830 DOI: 10.3389/fmicb.2021.781357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this review was to provide an update on the complex relationship between manure application, altered pathogen levels and antibiotic resistance. This is necessary to protect health and improve the sustainability of this major farming practice in agricultural systems based on high levels of manure production. It is important to consider soil health in relation to environment and land management practices in the context of the soil microflora and the introduction of pathogens on the health of the soil microbiome. Viable pathogens in manure spread on agricultural land may be distributed by leaching, surface run-off, water source contamination and contaminated crop removal. Thus it is important to understand how multiple pathogens can persist in manures and on soil at farm-scale and how crops produced under these conditions could be a potential transfer route for zoonotic pathogens. The management of pathogen load within livestock manure is a potential mechanism for the reduction and prevention of outbreaks infection with Escherichia coli, Listeria Salmonella, and Campylobacter. The ability of Campylobacter, E. coli, Listeria and Salmonella to combat environmental stress coupled with their survival on food crops and vegetables post-harvest emphasizes the need for further study of these pathogens along with the emerging pathogen Providencia given its link to disease in the immunocompromised and its’ high levels of antibiotic resistance. The management of pathogen load within livestock manure has been widely recognized as a potential mechanism for the reduction and prevention of outbreaks infection but any studies undertaken should be considered as region specific due to the variable nature of the factors influencing pathogen content and survival in manures and soil. Mediocre soils that require nutrients could be one template for research on manure inputs and their influence on soil health and on pathogen survival on grassland and in food crops.
Collapse
Affiliation(s)
- Zoe Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| | - Lisa Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Patrick J Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James S G Dooley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
7
|
Interplay between Bacterial Clones and Plasmids in the Spread of Antibiotic Resistance Genes in the Gut: Lessons from a Temporal Study in Veal Calves. Appl Environ Microbiol 2021; 87:e0135821. [PMID: 34613750 DOI: 10.1128/aem.01358-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intestinal carriage of extended spectrum β-lactamase (ESBL)-producing Escherichia coli is a frequent, increasing, and worrying phenomenon, but little is known about the molecular scenario and the evolutionary forces at play. We screened 45 veal calves, known to have high prevalence of carriage, for ESBL-producing E. coli on 514 rectal swabs (one randomly selected colony per sample) collected over 6 months. We characterized the bacterial clones and plasmids carrying blaESBL genes with a combination of genotyping methods, whole genome sequencing, and conjugation assays. One hundred and seventy-three ESBL-producing E. coli isolates [blaCTX-M-1 (64.7%), blaCTX-M-14 (33.5%), or blaCTX-M-15 (1.8%)] were detected, belonging to 32 bacterial clones, mostly of phylogroup A. Calves were colonized successively by different clones with a trend in decreasing carriage. The persistence of a clone in a farm was significantly associated with the number of calves colonized. Despite a high diversity of E. coli clones and blaCTX-M-carrying plasmids, few blaCTX-M gene/plasmid/chromosomal background combinations dominated, due to (i) efficient colonization of bacterial clones and/or (ii) successful plasmid spread in various bacterial clones. The scenario "clone versus plasmid spread" depended on the farm. Thus, epistatic interactions between resistance genes, plasmids, and bacterial clones contribute to optimize fitness in specific environments. IMPORTANCE The gut microbiota is the epicenter of the emergence of resistance. Considerable amount of knowledge on the molecular mechanisms of resistance has been accumulated, but the ecological and evolutionary forces at play in nature are less studied. In this context, we performed a field work on temporal intestinal carriage of extended spectrum β-lactamase (ESBL)-producing Escherichia coli in veal farms. Veal calves are animals with one of the highest levels of ESBL producing E. coli fecal carriage, due to early high antibiotic exposure. We were able to show that calves were colonized successively by different ESBL-producing E. coli clones, and that two main scenarios were at play in the spread of blaCTX-M genes among calves: efficient colonization of several calves by a few bacterial clones and successful plasmid spread in various bacterial clones. Such knowledge should help develop new strategies to fight the emergence of antibiotic-resistance.
Collapse
|
8
|
Segura A, Bertin Y, Durand A, Benbakkar M, Forano E. Transcriptional analysis reveals specific niche factors and response to environmental stresses of enterohemorrhagic Escherichia coli O157:H7 in bovine digestive contents. BMC Microbiol 2021; 21:284. [PMID: 34663220 PMCID: PMC8524897 DOI: 10.1186/s12866-021-02343-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Enterohemorrhagic Escherichia coli (EHEC) are responsible for severe diseases in humans, and the ruminant digestive tract is considered as their main reservoir. Their excretion in bovine feces leads to the contamination of foods and the environment. Thus, providing knowledge of processes used by EHEC to survive and/or develop all along the bovine gut represents a major step for strategies implementation. Results We compared the transcriptome of the reference EHEC strain EDL933 incubated in vitro in triplicate samples in sterile bovine rumen, small intestine and rectum contents with that of the strain grown in an artificial medium using RNA-sequencing (RNA-seq), focusing on genes involved in stress response, adhesion systems including the LEE, iron uptake, motility and chemotaxis. We also compared expression of these genes in one digestive content relative to the others. In addition, we quantified short chain fatty acids and metal ions present in the three digestive contents. RNA-seq data first highlighted response of EHEC EDL933 to unfavorable physiochemical conditions encountered during its transit through the bovine gut lumen. Seventy-eight genes involved in stress responses including drug export, oxidative stress and acid resistance/pH adaptation were over-expressed in all the digestive contents compared with artificial medium. However, differences in stress fitness gene expression were observed depending on the digestive segment, suggesting that these differences were due to distinct physiochemical conditions in the bovine digestive contents. EHEC activated genes encoding three toxin/antitoxin systems in rumen content and many gene clusters involved in motility and chemotaxis in rectum contents. Genes involved in iron uptake and utilization were mostly down-regulated in all digestive contents compared with artificial medium, but feo genes were over-expressed in rumen and small intestine compared with rectum. The five LEE operons were more expressed in rectum than in rumen content, and LEE1 was also more expressed in rectum than in small intestine content. Conclusion Our results highlight various strategies that EHEC may implement to survive in the gastrointestinal environment of cattle. These data could also help defining new targets to limit EHEC O157:H7 carriage and shedding by cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02343-7.
Collapse
Affiliation(s)
- Audrey Segura
- Université Clermont Auvergne, INRAE, MEDIS 0454, F-63000, Clermont-Ferrand, France
| | - Yolande Bertin
- Université Clermont Auvergne, INRAE, MEDIS 0454, F-63000, Clermont-Ferrand, France
| | - Alexandra Durand
- Université Clermont Auvergne, INRAE, MEDIS 0454, F-63000, Clermont-Ferrand, France
| | - Mhammed Benbakkar
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000, Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, MEDIS 0454, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
9
|
Genetic and Phenotypic Factors Associated with Persistent Shedding of Shiga Toxin-Producing Escherichia coli by Beef Cattle. Appl Environ Microbiol 2020; 86:AEM.01292-20. [PMID: 32769184 DOI: 10.1128/aem.01292-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a leading cause of foodborne infections. Cattle are an important STEC reservoir, although little is known about specific pathogen traits that impact persistence in the farm environment. Hence, we sought to evaluate STEC isolates recovered from beef cattle in a single herd in Michigan. To do this, we collected fecal grabs from 26 cattle and resampled 13 of these animals at 3 additional visits over a 3-month period. In all, 66 STEC isolates were recovered for genomics and biofilm quantification using crystal violet assays. The STEC population was diverse, representing seven serotypes, including O157:H7, O26:H11, and O103:H2, which are commonly associated with human infections. Although a core genome analysis of 2,933 genes grouped isolates into clusters based on serogroups, some isolates within each cluster had variable biofilm levels and virulence gene profiles. Most (77.8%; n = 49) isolates harbored stx 2a, while 38 (57.5%) isolates formed strong biofilms. Isolates belonging to the predominant serogroup O6 (n = 36; 54.5%) were more likely to form strong biofilms, persistently colonize multiple cattle, and be acquired over time. A high-quality single nucleotide polymorphism (SNP) analysis of 33 O6 isolates detected between 0 and 13 single nucleotide polymorphism (SNP) differences between strains, indicating that highly similar strain types were persisting in this herd. Similar findings were observed for other persistent serogroups, although key genes were found to differ among strong and weak biofilm producers. Together, these data highlight the diversity and persistent nature of some STEC types in this important food animal reservoir.IMPORTANCE Food animal reservoirs contribute to Shiga toxin-producing Escherichia coli (STEC) evolution via the acquisition of horizontally acquired elements like Shiga toxin bacteriophages that enhance pathogenicity. In cattle, persistent fecal shedding of STEC contributes to contamination of beef and dairy products and to crops being exposed to contaminated water systems. Hence, identifying factors important for STEC persistence is critical. This longitudinal study enhances our understanding of the genetic diversity of STEC types circulating in a cattle herd and identifies genotypic and phenotypic traits associated with persistence. Key findings demonstrate that multiple STEC types readily persist in and are transmitted across cattle in a shared environment. These dynamics also enhance the persistence of virulence genes that can be transferred between bacterial hosts, resulting in the emergence of novel STEC strain types. Understanding how pathogens persist and diversify in reservoirs is important for guiding new preharvest prevention strategies aimed at reducing foodborne transmission to humans.
Collapse
|
10
|
Al-Ajmi D, Rahman S, Banu S. Occurrence, virulence genes, and antimicrobial profiles of Escherichia coli O157 isolated from ruminants slaughtered in Al Ain, United Arab Emirates. BMC Microbiol 2020; 20:210. [PMID: 32677884 PMCID: PMC7364618 DOI: 10.1186/s12866-020-01899-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) is a major source of food-borne illness around the world. E. coli O157 has been widely reported as the most common STEC serogroup and has emerged as an important enteric pathogen. Cattle, in particular have been identified as a major E. coli O157:H7 reservoir of human infections; however, the prevalence of this organism in camels, sheep, and goats is less understood. The aim of this study was to evaluate the occurrence and concentration of E. coli serotype O157 in the feces of healthy camels (n = 140), cattle (n = 137), sheep (n = 141) and goats (n = 150) slaughtered in United Arab Emirates (UAE) for meat consumption between September 2017 and August 2018. We used immunomagnetic separation coupled with a culture-plating method to detect E. coli O157. Non-sorbitol fermenting colonies were assessed via latex-agglutination testing, and positive cultures were analyzed by performing polymerase chain reactions to detect genes encoding attaching and effacing protein (eaeA), hemolysin A (hlyA, also known as ehxA) and Shiga toxin (stx1 and stx2), and E. coli O157:H7 specific genes (rfb O157, uidA, and fliC). All E. coli O157 isolates were analyzed for their susceptibility to 20 selected antimicrobials. RESULTS E. coli O157 was observed in camels, goats, and cattle fecal samples at abundances of 4.3, 2, and 1.46%, respectively, but it was undetectable in sheep feces. The most prevalent E. coli O157 gene in all STEC isolates was stx2;, whereas, stx1 was not detected in any of the samples. The fecal samples from camels, goats, and cattle harbored E. coli O157 isolates that were 100% susceptible to cefotaxime, chloramphenicol, ciprofloxacin, norfloxacin, and polymyxin B. CONCLUSION To our knowledge, this is the first report on the occurrence of E. coli O157 in slaughter animals in the UAE. Our results clearly demonstrate the presence of E. coli O157 in slaughtered animals, which could possibly contaminate meat products intended for human consumption.
Collapse
Affiliation(s)
- Dawood Al-Ajmi
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.
| | - Shafeeq Rahman
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Sharmila Banu
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Wang LYR, Jokinen CC, Laing CR, Johnson RP, Ziebell K, Gannon VPJ. Assessing the genomic relatedness and evolutionary rates of persistent verotoxigenic Escherichia coli serotypes within a closed beef herd in Canada. Microb Genom 2020; 6. [PMID: 32496181 PMCID: PMC7371104 DOI: 10.1099/mgen.0.000376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Verotoxigenic Escherichia coli (VTEC) are food- and water-borne pathogens associated with both sporadic illness and outbreaks of enteric disease. While it is known that cattle are reservoirs of VTEC, little is known about the genomic variation of VTEC in cattle, and whether the variation in genomes reported for human outbreak strains is consistent with individual animal or group/herd sources of infection. A previous study of VTEC prevalence identified serotypes carried persistently by three consecutive cohorts of heifers within a closed herd of cattle. This present study aimed to: (i) determine whether the genomic relatedness of bovine isolates is similar to that reported for human strains associated with single source outbreaks, (ii) estimate the rates of genome change among dominant serotypes over time within a cattle herd, and (iii) identify genomic features of serotypes associated with persistence in cattle. Illumina MiSeq genome sequencing and genotyping based on allelic and single nucleotide variations were completed, while genome change over time was measured using Bayesian evolutionary analysis sampling trees. The accessory genome, including the non-protein-encoding intergenic regions (IGRs), virulence factors, antimicrobial-resistance genes and plasmid gene content of representative persistent and sporadic cattle strains were compared using Fisher’s exact test corrected for multiple comparisons. Herd strains from serotypes O6:H34 (n=22), O22:H8 (n=30), O108:H8 (n=39), O139:H19 (n=44) and O157:H7 (n=106) were readily distinguishable from epidemiologically unrelated strains of the same serotype using a similarity threshold of 10 or fewer allele differences between adjacent nodes. Temporal-cohort clustering within each serotype was supported by date randomization analysis. Substitutions per site per year were consistent with previously reported values for E. coli; however, there was low branch support for these values. Acquisition of the phage-encoded Shiga toxin 2 gene in serotype O22:H8 was observed. Pan-genome analyses identified accessory regions that were more prevalent in persistent serotypes (P≤0.05) than in sporadic serotypes. These results suggest that VTEC serotypes from a specific cattle population are highly clonal with a similar level of relatedness as human single-source outbreak-associated strains, but changes in the genome occur gradually over time. Additionally, elements in the accessory genomes may provide a selective advantage for persistence of VTEC within cattle herds.
Collapse
Affiliation(s)
- Lu Ya Ruth Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | | | - Chad R Laing
- National Centre for Animal Disease, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Roger P Johnson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
12
|
Scaccia N, Vaz-Moreira I, Manaia CM. Persistence of wastewater antibiotic resistant bacteria and their genes in human fecal material. FEMS Microbiol Ecol 2020; 96:5815073. [PMID: 32239211 DOI: 10.1093/femsec/fiaa058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
Abstract
Domestic wastewater is a recognized source of antibiotic resistant bacteria and antibiotic resistance genes (ARB&ARGs), whose risk of transmission to humans cannot be ignored. The fitness of wastewater ARB in the complex fecal microbiota of a healthy human was investigated in feces-based microcosm assays (FMAs). FMAs were inoculated with two wastewater isolates, Escherichia coli strain A2FCC14 (MLST ST131) and Enterococcus faecium strain H1EV10 (MLST ST78), harboring the ARGs blaTEM, blaCTX, blaOXA-A and vanA, respectively. The FMAs, incubated in the presence or absence of oxygen or in the presence or absence of the antibiotics cefotaxime or vancomycin, were monitored based on cultivation, ARGs quantification and bacterial community analysis. The fecal bacterial community was dominated by members of the phyla Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia. The ARGs harbored by the wastewater isolates could be quantified after one week, in FMAs incubated under both aerobic and anaerobic conditions. These observations were not significantly different in FMAs incubated anaerobically, supplemented with sub-inhibitory concentrations of cefotaxime or vancomycin. The observation that ARGs of wastewater ARB persisted in presence of the human fecal microbiota for at least one week supports the hypothesis of a potential transmission to humans, a topic that deserves further investigation.
Collapse
Affiliation(s)
- Nazareno Scaccia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
13
|
Interactions of Shiga toxin-producing Escherichia coli with leafy green vegetables. Braz J Microbiol 2020; 51:797-803. [PMID: 32125677 DOI: 10.1007/s42770-020-00251-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/20/2020] [Indexed: 10/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important foodborne pathogens responsible for a wide spectrum of diseases including diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS). A considerable number of outbreaks and sporadic cases of HUS have been associated with ingestion of fresh ready-to-eat products. Maintenance and persistence of STEC in the environment and foods can be related to its ability to form biofilm. A non-O157 STEC strain isolated from bovine feces was distinguished by its great ability to form biofilm in abiotic surfaces. In the present study, we aimed to investigate the ability of this strain to adhere to rocket leaves (Eruca sativa). Adherence assays were carried out for 3 h at 28 °C and analyzed by scanning electron microscopy. The non-O157 STEC strain adhered to leaf surface and inside the stomata forming several bacterial aggregates. The number of adherent bacteria per square millimeter of leaf was eightfold higher compared with an O157 STEC strain. Deletion of the STEC autotransporter protein contributing to biofilm (Sab) reduced the adherence ability of the non-O157 strain in almost 50%, and deletion of antigen 43 (Ag43) almost abolished this interaction. Very few bacteria were seen on the leaf surface, and these differences were statistically significant, suggesting the role of both proteins and especially Ag43 in the interaction of the non-O157 STEC strain with leaves. The risk posed by non-O157 STEC adherence to leaves on fresh produce contamination should not be neglected, and measures that effectively control adherence should be included in strategies to control non-O157 STEC.
Collapse
|
14
|
Goma MKE, Indraswari A, Haryanto A, Widiasih DA. Detection of Escherichia coli O157:H7 and Shiga toxin 2a gene in pork, pig feces, and clean water at Jagalan slaughterhouse in Surakarta, Central Java Province, Indonesia. Vet World 2019; 12:1584-1590. [PMID: 31849420 PMCID: PMC6868253 DOI: 10.14202/vetworld.2019.1584-1590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Aim The feasibility assessment of food products on the market becomes one of the milestones of food safety. The quality of food safety of animal origin especially pork need to get attention and more real action from the parties related and concerned. Since pork is also a source of transmission for the contagion of foodborne disease so that the study of the existence of several agents in the pork and its products become the benchmark of safety level. This study aimed to isolate, identify, and detect the Shiga toxin 2a (stx2a) gene from Escherichia coli O157:H7 in pork, pig feces, and clean water in the Jagalan slaughterhouse. Materials and Methods A total of 70 samples consisting of 32 pork samples, 32 pig fecal samples, and 6 clean water samples were used to isolate and identify E. coli O157:H7 and the stx2a gene. Isolation and identification of E. coli O157:H7 were performed using culture on eosin methylene blue agar and Sorbitol-MacConkey agar media and confirmed molecularly with polymerase chain reaction to amplify the target genes rfbE (317 bp) and fliC (381 bp). The isolates, which were identified as E. coli O157:H7, were investigated for the stx2a gene (553 bp). Results The results of this study show that of the total collected samples, E. coli O157:H7 was 28.6% in Jagalan slaughterhouse and consisted of 25% of pork samples, 31.25% of pig fecal samples, and 33.3% of clean water samples. The isolates that were identified to be E. coli O157:H7 mostly contained the stx2a gene, which was equal to 75%, and consisted of seven isolates from pork samples, seven isolates from fecal samples, and one isolate from clean water samples. Conclusion E. coli O157:H7 was found in 28.6% of pork, pig feces, and clean water in Jagalan slaughterhouse and 75% of identified E. coli O157:H7 contained the stx2a gene.
Collapse
Affiliation(s)
- Maria Kristiani Epi Goma
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Alvita Indraswari
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aris Haryanto
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dyah Ayu Widiasih
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
15
|
The ecnA Antitoxin Is Important Not Only for Human Pathogens: Evidence of Its Role in the Plant Pathogen Xanthomonas citri subsp. citri. J Bacteriol 2019; 201:JB.00796-18. [PMID: 31358614 DOI: 10.1128/jb.00796-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/24/2019] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas citri subsp. citri causes citrus canker disease worldwide in most commercial varieties of citrus. Its transmission occurs mainly by wind-driven rain. Once X. citri reaches a leaf, it can epiphytically survive by forming a biofilm, which enhances the persistence of the bacteria under different environmental stresses and plays an important role in the early stages of host infection. Therefore, the study of genes involved in biofilm formation has been an important step toward understanding the bacterial strategy for survival in and infection of host plants. In this work, we show that the ecnAB toxin-antitoxin (TA) system, which was previously identified only in human bacterial pathogens, is conserved in many Xanthomonas spp. We further show that in X. citri, ecnA is involved in important processes, such as biofilm formation, exopolysaccharide (EPS) production, and motility. In addition, we show that ecnA plays a role in X. citri survival and virulence in host plants. Thus, this mechanism represents an important bacterial strategy for survival under stress conditions.IMPORTANCE Very little is known about TA systems in phytopathogenic bacteria. ecnAB, in particular, has only been studied in bacterial human pathogens. Here, we showed that it is present in a wide range of Xanthomonas sp. phytopathogens; moreover, this is the first work to investigate the functional role of this TA system in Xanthomonas citri biology, suggesting an important new role in adaptation and survival with implications for bacterial pathogenicity.
Collapse
|
16
|
Darlison J, Mieli M, Bengtsson T, Hartmann R, Mogren L, Vågsholm I, Karlsson M, Alsanius BW. Plant species affects establishment of Escherichia coli O157:H7 gfp+ on leafy vegetables. J Appl Microbiol 2019; 127:292-305. [PMID: 31054164 DOI: 10.1111/jam.14299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023]
Abstract
AIMS Greenhouse trials were conducted with different cultivars of baby leaf spinach, rocket and Swiss chard and inoculation of Escherichia coli O157:H7 gfp+, to determine whether plant species and cultivar have an impact on the establishment of this strain. METHODS AND RESULTS Three cultivars each of spinach, rocket and Swiss chard were spray inoculated with E. coli O157:H7 gfp+ at doses of log 7 CFU per ml. Due to the different lengths of growing period spinach and Swiss chard were spray inoculated three times and rocket five times, with final inoculation performed 3 days prior to harvest. After a growing period of 26-33 days, E. coli O157:H7 gfp+ was recovered from the leaf surface in mean populations between log 1 and 6 CFU per gram. The lowest occurrence of E. coli O157:H7 gfp+ was found on rocket leaves and the highest on spinach. There was no significant difference in the establishment of E. coli O157:H7 gfp+ between cultivars, but there were differences between plant species. Indigenous phyllosphere bacteria were pure cultured and identified with 16S rRNA gene sequencing. CONCLUSIONS Despite the same high inoculation dose of E. coli O157:H7 gfp+ on leaves, the establishment rate differed between plant species. However, plant cultivar did not affect establishment. Pantoea agglomerans dominated the identified bacterial isolates. SIGNIFICANCE AND IMPACT OF THE STUDY As previous studies are inconclusive on choice of model plant species and cultivar, we studied whether plant species or cultivar determines the fate of E. coli O157:H7 gfp+ on leafy vegetables. The findings indicate that plant species is a key determinant in the establishment of E. coli O157:H7 gfp+.
Collapse
Affiliation(s)
- J Darlison
- Department of Biosystems and Technology, Microbial Horticulture Laboratory, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - M Mieli
- Department of Biosystems and Technology, Microbial Horticulture Laboratory, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - T Bengtsson
- Department of Biosystems and Technology, Microbial Horticulture Laboratory, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - R Hartmann
- Department of Biosystems and Technology, Microbial Horticulture Laboratory, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Department of Horticultural Production Systems, Wilhelm Leibniz University, Hannover, Germany
| | - L Mogren
- Department of Biosystems and Technology, Microbial Horticulture Laboratory, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - I Vågsholm
- Department of Biomedical Sciences and Veterinary Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - M Karlsson
- Department of Biosystems and Technology, Microbial Horticulture Laboratory, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - B W Alsanius
- Department of Biosystems and Technology, Microbial Horticulture Laboratory, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
17
|
Segura A, Bertoni M, Auffret P, Klopp C, Bouchez O, Genthon C, Durand A, Bertin Y, Forano E. Transcriptomic analysis reveals specific metabolic pathways of enterohemorrhagic Escherichia coli O157:H7 in bovine digestive contents. BMC Genomics 2018; 19:766. [PMID: 30352567 PMCID: PMC6199705 DOI: 10.1186/s12864-018-5167-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/15/2018] [Indexed: 11/12/2022] Open
Abstract
Background The cattle gastrointestinal tract (GIT) is the main enterohemorrhagic Escherichia coli (EHEC) reservoir. In order to identify nutrients required for the survival or multiplication of EHEC in the bovine GIT, we compared the transcriptomes of the EHEC O157:H7 reference strain EDL933 cultured in vitro in bovine digestive contents (DCs) (rumen, small intestine and rectum) using RNA-sequencing. Results Gene expression profiles showed that EHEC EDL933 activated common but also specific metabolic pathways to survive in the different bovine DCs. Mucus-derived carbohydrates seem important in EHEC nutrition in posterior DCs (small intestine and rectum) but not in rumen content. Additional carbohydrates (xylose, ribose, mannitol, galactitol) as well as gluconeogenic substrates (aspartate, serine, glycerol) would also be used by EHEC as carbon and/or nitrogen sources all along the bovine GIT including the rumen. However, xylose, GalNac, ribose and fucose transport and/or assimilation encoding genes were over-expressed during incubation in rectum content compared with rumen and intestine contents, and genes coding for maltose transport were only induced in rectum. This suggests a role for these carbohydrates in the colonization of the cattle rectum, considered as the major site for EHEC multiplication. In contrast, the transcription of the genes associated with the assimilation of ethanolamine, an important nitrogen source for EHEC, was poorly induced in EHEC growing in rectum content, suggesting that ethanolamine is mainly assimilated in the cattle rumen and small intestine. Respiratory flexibility would also be required for EHEC survival because of the redundancy of dehydrogenases and reductases simultaneously induced in the bovine DCs, probably in response to the availability of electron donors and acceptors. Conclusion EHEC EDL933 showed a high flexibility in the activation of genes involved in respiratory pathways and assimilation of carbon and nitrogen sources, most of them from animal origin. This may allow the bacterium to adapt and survive in the various bovine GIT compartments. Obtaining a better understanding of EHEC physiology in bovine GIT is a key step to ultimately propose strategies to limit EHEC carriage and shedding by cattle. Electronic supplementary material The online version of this article (10.1186/s12864-018-5167-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Audrey Segura
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Marine Bertoni
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France.,Present address : Institut National de Police Scientifique - Laboratoire de Police Scientifique de Marseille, Marseille, France
| | - Pauline Auffret
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France.,Present address : Ifremer, UMR 241 EIO, Tahiti, French Polynesia
| | - Christophe Klopp
- Plateforme Bioinformatique Toulouse, Midi-Pyrénées UBIA, INRA, Auzeville, Castanet-Tolosan, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Alexandra Durand
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Yolande Bertin
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
18
|
Torres AG, Amaral MM, Bentancor L, Galli L, Goldstein J, Krüger A, Rojas-Lopez M. Recent Advances in Shiga Toxin-Producing Escherichia coli Research in Latin America. Microorganisms 2018; 6:microorganisms6040100. [PMID: 30274180 PMCID: PMC6313304 DOI: 10.3390/microorganisms6040100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Escherichia coli are known to be a common cause of diarrheal disease and a frequently occurring bacterial infection in children and adults in Latin America. Despite the effort to combat diarrheal infections, the south of the American continent remains a hot spot for infections and sequelae associated with the acquisition of one category of pathogenic E. coli, the Shiga toxin-producing E. coli (STEC). This review will focus on an overview of the prevalence of different STEC serotypes in human, animals and food products, focusing on recent reports from Latin America outlining the recent research progress achieved in this region to combat disease and endemicity in affected countries and to improve understanding on emerging serotypes and their virulence factors. Furthermore, this review will highlight the progress done in vaccine development and treatment and will also discuss the effort of the Latin American investigators to respond to the thread of STEC infections by establishing a multidisciplinary network of experts that are addressing STEC-associated animal, human and environmental health issues, while trying to reduce human disease. Regardless of the significant scientific contributions to understand and combat STEC infections worldwide, many significant challenges still exist and this review has focus in the Latin American efforts as an example of what can be accomplished when multiple groups have a common goal.
Collapse
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Maria M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Leticia Bentancor
- Laboratory of Genetic Engineering and Molecular Biology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires 1876, Argentina.
| | - Lucia Galli
- Instituto de Genética Veterinaria Ing. Fernando N. Dulout (UNLP-CONICET, La Plata), Facultad de Ciencias Veterinarias, La Plata 1900, Argentina.
| | - Jorge Goldstein
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Alejandra Krüger
- Centro de Investigación Veterinaria de Tandil (CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Tandil 7000, Argentina.
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Bertin Y, Segura A, Jubelin G, Dunière L, Durand A, Forano E. Aspartate metabolism is involved in the maintenance of enterohaemorrhagicEscherichia coliO157:H7 in bovine intestinal content. Environ Microbiol 2018; 20:4473-4485. [DOI: 10.1111/1462-2920.14380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/20/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Yolande Bertin
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Audrey Segura
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Gregory Jubelin
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Lysiane Dunière
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
- Lallemand Animal Nutrition Blagnac France
| | - Alexandra Durand
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS F‐63000 Clermont‐Ferrand France
| |
Collapse
|