1
|
Shi Y, Wei X, Zhang Z, Wang S, Liu H, Cui D, Hua W, Fu Y, Chen Y, Xue Z, Li X, Wang W. Developmental toxicity and potential mechanisms exposed to polystyrene microplastics and polybrominated diphenyl ethers during early life stages of fat greenling (Hexagrammos otakii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106933. [PMID: 38705000 DOI: 10.1016/j.aquatox.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
The occurrence of microplastics (MPs) in aquatic ecosystems and their ability to absorb hydrophobic pollutants, such as persistent organic pollutants (POPs), is currently a significant concern. MPs, which are the main breakdown product of plastics, have been frequently detected in the environment, posing serious threats to organisms' health. One particular pollutant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), is a dominant congener of PBDEs and is highly toxic to organisms. However, there is limited knowledge regarding the exposure of marine fishes to PBDEs through MPs and their combined toxic effects. In this study, the embryo toxicity of Hexagrammos otakii was conducted to investigate the combined effects of MPs and BDE-47. The results showed that MPs and BDE-47 co-exposure had detrimental effects on embryonic development, such as reduced hatchability, increased mortality, decreased heart rate, and body malformation. Moreover, the combined toxicity of these substances appeared more pronounced harmful effects compared to exposure to BDE-47 alone. Histopathological examination revealed that co-exposure can cause greater damage to hatching glands and yolk. The enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included phagosome, metabolism of xenobiotics by cytochrome P450, TCA cycle, and Wnt signaling pathway, which are closely related to embryonic growth. BDE-47 and MPs may activate the Wnt signaling pathway to affect the normal development of embryos. Our results suggest that MPs and BDE-47 exposure may cause growth disorders in the early life stages of H.otakii, leading to abnormal embryonic development. All these results will contribute to the further study of the ecological risk assessment and toxicity of MPs and organic pollutant mixtures in marine fish.
Collapse
Affiliation(s)
- Yanyan Shi
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyan Wei
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Zheng Zhang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Dandan Cui
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Wenyuan Hua
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Yanxin Fu
- Liaoning Provincial Key Laboratory for Hydrobiology, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Huang J, Zheng S, Li Q, Zhao H, Zhou X, Yang Y, Zhang W, Cao Y. Host miR-146a-3p Facilitates Replication of Infectious Hematopoietic Necrosis Virus by Targeting WNT3a and CCND1. Vet Sci 2024; 11:204. [PMID: 38787176 PMCID: PMC11126136 DOI: 10.3390/vetsci11050204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a serious pathogen that causes great economic loss to the salmon and trout industry. Previous studies showed that IHNV alters the expression patterns of splenic microRNAs (miRNAs) in rainbow trout. Among the differentially expressed miRNAs, miRNA146a-3p was upregulated by IHNV. However, it is unclear how IHNV utilizes miRNA146a-3p to escape the immune response or promote viral replication. The present study suggested that one multiplicity of infection (MOI) of IHNV induced the most significant miR-146a-3p expression at 1 day post infection (dpi). The upregulation of miR-146a-3p by IHNV was due to viral N, P, M, and G proteins and relied on the interferon (IFN) signaling pathway. Further investigation revealed that Wingless-type MMTV integration site family 3a (WNT3a) and G1/S-specific cyclin-D1-like (CCND1) are the target genes of miRNA-146a-3p. The regulation of IHNV infection by miRNA-146a-3p is dependent on WNT3a and CCND1. MiRNA-146a-3p was required for the downregulation of WNT3a and CCND1 by IHNV. Moreover, we also found that WNT3a and CCND1 are novel proteins that induce the type-I IFN response in RTG-2 cells, and both of them could inhibit the replication of IHNV. Therefore, IHNV-induced upregulation of miRNA-146a-3p promotes early viral replication by suppressing the type-I IFN response by targeting WNT3a and CCND1. This work not only reveals the molecular mechanism of miRNA-146a-3p during IHNV infection but also provides new antiviral targets for IHNV.
Collapse
Affiliation(s)
- Jingwen Huang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Shihao Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Qiuji Li
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Hongying Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Xinyue Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Yutong Yang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150069, China
| | - Yongsheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| |
Collapse
|
3
|
Xu H, Xu X, He H, Shao H, Yao Y, Qin A, Qian K. Regulation of Wnt/β-catenin signaling by Marek's disease virus in vitro and in vivo. Front Microbiol 2024; 15:1388862. [PMID: 38638910 PMCID: PMC11025357 DOI: 10.3389/fmicb.2024.1388862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Marek's disease virus (MDV) infection causes immunosuppression in the host, ultimately inducing tumor formation and causing significant economic losses to the poultry industry. While the abnormal activation of the Wnt/β-catenin signaling pathway is closely associated with the occurrence and development of tumors. However, the relationship between MDV and the Wnt/β-catenin pathway remains unclear. In this study, we found that the MDV RB1B strain, but not the MDV vaccine strain CVI988, activated the Wnt/β-catenin signaling pathway by increasing the phosphorylation level of GSK-3β in chicken embryo fibroblast (CEF). In vivo infection experiments in SPF chickens also confirmed that the RB1B strain activated the Wnt/β-catenin signaling pathway, while the CVI988 strain did not lead to its activation. Moreover, unlike the Meq protein encoded by the CVI988 strain, the Meq protein encoded by the RB1B strain specifically activated the Wnt/β-catenin signaling pathway in CEF cells. The findings from these studies extend our understanding of the regulation of Wnt/β-catenin signaling by MDV, which make a new contribution to understanding the virus-host interactions of MDV.
Collapse
Affiliation(s)
- Haiyin Xu
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xihao Xu
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huifeng He
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hongxia Shao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Surrey, United Kingdom
| | - Aijian Qin
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kun Qian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Wang T, Wang C, Han J, Hou X, Hu R, Chang W, Wang L, Qi X, Wang J. β-catenin facilitates fowl adenovirus serotype 4 replication through enhancing virus-induced autophagy. Vet Microbiol 2023; 276:109617. [PMID: 36469999 DOI: 10.1016/j.vetmic.2022.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
β-catenin is a key component of the Wnt/β-catenin signal transduction cascade which is a highly conserved signaling pathway in eukaryotes. Increasing evidence suggests that the Wnt/β-catenin signaling pathway is involved in the infection of many viruses. However, its role in fowl adenovirus serotype 4 (FAdV-4) replication remains unclear. In the present study, we showed that FAdV-4 infection increased the expression of β-catenin and promoted the nuclear translocation of β-catenin. Overexpression of β-catenin and LiCl treatment stimulated the accumulation of β-catenin in the nucleus, and then facilitated FAdV-4 replication. Conversely, repression of β-catenin by inhibitors and siRNA significantly inhibited FAdV-4 replication. Furthermore, inhibition of autophagy by 3-Methyladenine (3-MA) suppressed the FAdV-4 replication, and repression of β-catenin inhibited the FAdV-4-triggered autophagy. In conclusion, the nuclear translocation of β-catenin benefits FAdV-4 replication, and suppression of β-catenin limits FAdV-4 production by inhibiting FAdV-4-induced autophagy. These findings indicated that β-catenin is an important regulator of FAdV-4 replication which can serve as a potential target for anti-FAdV-4 agents.
Collapse
Affiliation(s)
- Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chongyang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinjie Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Wang C, Hu R, Duan L, Hou Q, Yang M, Wang T, Liu H, Xiao S, Dang R, Wang J, Wang X, Zhang S, Yang Z. The canonical Wnt/β-catenin signaling pathway facilitates pseudorabies virus proliferation and enhances virus-induced autophagy. Vet Microbiol 2022; 272:109502. [PMID: 35841697 DOI: 10.1016/j.vetmic.2022.109502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
Pseudorabies virus (PRV) is a swine herpesvirus with a broad host range that causes significant economic losses worldwide. The Wnt/β-catenin signaling pathway is reportedly involved in multiple viruses' proliferation. In this study, we demonstrated that PRV infection significantly activated the Wnt/β-catenin signaling and promoted the nuclear translocation of β-catenin. Applying specific chemical inhibitors (FH535 and iCRT14) caused a remarkable decrease in PRV titers in various cell lines. Knockdown of β-catenin by siRNA also reduced the proliferation of PRV. On the contrary, treatment with lithium chloride (LiCl), an inhibitor of GSK3β, stimulated the Wnt/β-catenin signaling pathway and enhanced the PRV proliferation. Similarly, overexpression of β-catenin promoted PRV proliferation and reversed the antiviral effect of FH535. Moreover, LiCl promoted PRV-induced autophagy, whereas FH535 and iCRT14 showed converse effects. These findings suggest that PRV infection stimulates the canonical Wnt/β-catenin signaling pathway, facilitating PRV proliferation and regulating virus-induced autophagy. These data also provide potential targets for developing antiviral agents against PRV.
Collapse
Affiliation(s)
- Chongyang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Liuyuan Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qili Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengqing Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Dang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Wen L, He K. Genomic Rearrangement and Recombination of Porcine Circovirus Type 2 and Porcine Circovirus-Like Virus P1 in China. Front Vet Sci 2022; 8:736366. [PMID: 34988138 PMCID: PMC8720756 DOI: 10.3389/fvets.2021.736366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/01/2021] [Indexed: 12/28/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) belongs to the genus Circovirus of the family Circoviridae, and it has been associated with porcine circovirus (associated) disease (PCVD or PCVAD) in pigs. PCVAD is the generic term for a series of disease syndromes that have caused economic losses to the pig industry worldwide. Since the discovery of PCV2 in the late 1990s, the virus has continued to evolve, and novel genotypes have continued to appear. Moreover, there has been recombination between different genotypes of PCV2. This review attempts to illustrate some progress concerning PCV2 in genome rearrangement and genomic recombination with non-PCV2-related nucleic acids, particularly focusing on the porcine circovirus-like virus P1 formed by the recombination of PCV2. The presence of rearranged PCV2 genomes can be demonstrated both in vivo and in vitro, and these subviral molecules ranged from 358 to 1,136 bp. Depending on whether it has the ability to encode a protein, the agents formed by PCV2 recombination can be divided into two categories: porcine circovirus-like viruses and porcine circovirus-like mini agents. We mainly discuss the porcine circovirus-like virus P1 regarding genomic characterization, etiology, epidemiology, and pathogenesis. Further research needs to be conducted on the pathogenicity of other porcine circovirus-like viruses and porcine circovirus-like mini agents and the effects of their interactions with PCV2, especially for the porcine circovirus-like mini agents that do not have protein-coding functions in the genome.
Collapse
Affiliation(s)
- Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Animal Diseases, Diagnostics, and Immunology, Ministry of Agriculture, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Animal Diseases, Diagnostics, and Immunology, Ministry of Agriculture, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
7
|
Qiao D, He Q, Cheng X, Yao Y, Nair V, Shao H, Qin A, Qian K. Regulation of Avian Leukosis Virus Subgroup J Replication by Wnt/β-Catenin Signaling Pathway. Viruses 2021; 13:v13101968. [PMID: 34696398 PMCID: PMC8539648 DOI: 10.3390/v13101968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Wnt/β-catenin signaling is a highly conserved pathway related to a variety of biological processes in different cells. The regulation of replication of various viruses by Wnt/β-catenin signaling pathway has been reported. However, the interaction between the Wnt/β-catenin pathway and avian leukosis virus is unknown. In the present study, we investigated the effect of modulating the Wnt/β-catenin pathway during avian leukosis virus subgroup J (ALV-J) infection. The activation of the Wnt/β-catenin pathway by GSK-3 inhibitor increased ALV-J mRNA, viral protein expression, and virus production in CEF cells. This increase was suppressed by iCRT14, one of the specific inhibitors of the Wnt/β-catenin signaling pathway. Moreover, treatment with iCRT14 reduced virus titer and viral gene expression significantly in CEF and LMH cells in a dose-dependent manner. Inhibition Wnt/β-catenin signaling pathway by knockdown of β-catenin reduced virus proliferation in CEF cells also. Collectively, these results suggested that the status of Wnt/β-catenin signaling pathway modulated ALV-J replication. These studies extend our understanding of the role of Wnt/β-catenin signaling pathway in ALV-J replication and make a new contribution to understanding the virus–host interactions of avian leukosis virus.
Collapse
Affiliation(s)
- Dandan Qiao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- School of Animal Engineering, Xuzhou Vocational College of Bioengineering, Xuzhou 221006, China
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Qian He
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Xiaowei Cheng
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK; (Y.Y.); (V.N.)
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK; (Y.Y.); (V.N.)
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-8797-9017; Fax: 86-514-8797-9217
| |
Collapse
|
8
|
Wen L, Zhu J, Zhang F, Xiao Q, Xie J, He K. Interaction of porcine circovirus-like virus P1 capsid protein with host proteins. BMC Vet Res 2021; 17:227. [PMID: 34174877 PMCID: PMC8235626 DOI: 10.1186/s12917-021-02926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Background Porcine circovirus-like virus P1 is a relatively new kind of virus that is closely related to the post-weaning multisystemic wasting syndrome, congenital tremors, and abortions in swine. The molecular mechanisms of P1 virus infection and pathogenesis are fully unknown. To analyze P1 and its host interactions, we used a yeast two-hybrid (Y2H) assay to identify cellular proteins interacting with the Cap of the P1 virus. In this study, the Cap of the P1 virus exhibited no self-activation and toxicity to yeast cells and was used as bait to screen the Y2H library prepared from the pancreas tissue. Results Five cellular proteins (EEP, Ral GDS, Bcl-2-L-12, CPS1, and one not identified) were found to interact with P1 Cap. The interaction between Cap and Ral GDS was confirmed by co-immunoprecipitation. Conclusions Our data are likely to support the future investigation of the underlying mechanism of P1 infection and pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02926-6.
Collapse
Affiliation(s)
- Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China. .,Key Laboratory of Animal Diseases, Diagnostics, and Immunology, Ministry of Agriculture, Nanjing, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou, Jiangsu, China.
| | - Jiaping Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,Key Laboratory of Animal Diseases, Diagnostics, and Immunology, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Fengxi Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,Key Laboratory of Animal Diseases, Diagnostics, and Immunology, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Qi Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,Key Laboratory of Animal Diseases, Diagnostics, and Immunology, Ministry of Agriculture, Nanjing, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jianping Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,Key Laboratory of Animal Diseases, Diagnostics, and Immunology, Ministry of Agriculture, Nanjing, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China. .,Key Laboratory of Animal Diseases, Diagnostics, and Immunology, Ministry of Agriculture, Nanjing, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou, Jiangsu, China.
| |
Collapse
|
9
|
Zhu L, Zhang S, Hou C, Liang X, Saif Dehwah MA, Tan B, Shi L. The T cell factor, pangolin, from Litopenaeus vannamei play a positive role in the immune responses against white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104041. [PMID: 33577842 DOI: 10.1016/j.dci.2021.104041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
As a downstream interactor of β-catenin, Pangolin which is the homologous protein of the T cell factor/lymphoid enhancer factor (TCF/LEF) in vertebrates is less understood in the research field of immunity. In this study, two isoforms of Litopenaeus vannamei Pangolin (LvPangolin1 and LvPangolin2) were identified. Phylogenetic tree analysis revealed that all of the Pangolin proteins from invertebrates were represented the same lineage. The mRNA expression profiles of the LvPangolin1 and LvPangolin2 genes differed across different tissues. The expression of LvPangolin1 and the amount of LvPangolin1and LvPangolin2 combined (LvPangolinComb) were significantly increased in the haemocyte, intestine and gill but reduced in the hepatopancreas after white spot syndrome virus (WSSV) challenge. The inhibition of LvPangolin1 but not LvPangolinComb significantly reduced the survival rates of L. vannamei after WSSV infection, while significantly higher WSSV viral loads in both LvPangolin1-inhibited and LvPangolinComb-inhibited L. vannamei were observed. Knockdown of LvPangolin by RNAi could distinctly decrease the expression of antimicrobial peptide (AMP) genes and their related transcription factors. All of these results indicate that LvPangolin plays a positive role in the response to WSSV infection and that this may be mediated through regulating the immune signalling pathways which control the expression of AMPs with antiviral abilities.
Collapse
Affiliation(s)
- Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xueping Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Mustafa Abdo Saif Dehwah
- Department of Medical Laboratories, Faculty of Medical and Health Science, Taiz University/AL-Turba Branch, Taiz, 3191, Republic of Yemen
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China.
| |
Collapse
|
10
|
Wang J, Gong L, Zhang W, Chen W, Pan H, Zeng Y, Liang X, Ma J, Zhang G, Wang H. Wnt/β-catenin signaling pathway inhibits porcine reproductive and respiratory syndrome virus replication by enhancing the nuclear factor-κB-dependent innate immune response. Vet Microbiol 2020; 251:108904. [PMID: 33181435 DOI: 10.1016/j.vetmic.2020.108904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
The Wnt/β-catenin signaling pathway is an evolutionarily highly conserved signaling pathway related to the replication of various viruses. However, the interaction between the Wnt/β-catenin pathway and porcine reproductive and respiratory syndrome virus (PRRSV) is unknown. In the present study, we showed that PRRSV-infected Marc-145 and PAM cells expressed high levels of c-myc and cyclinD1 mRNA and accumulation of β-catenin in the nucleus. PRRSV nonstructural proteins (Nsps) 1α, 1β, 3, 4, 7, 10, and 12, and proteins encoded by open reading frames (ORFs) 2b, 3, and 5 induced the activation of the Wnt pathway according to TOP/FOP luciferase reporter assay. But, Nsp5 inhibited the activation of the Wnt pathway. Pre-treatment with Wnt3a inhibited PRRSV replication in Marc-145 cells in a dose-dependent manner. Over-expression of β-catenin also inhibited PRRSV replication, while silencing of β-catenin by small hairpin RNA increased its replication in Marc-145 cells. Over-expression of β-catenin increased interferon regulatory factor (IRF)-3 expression and nuclear factor (NF)-κB phosphorylation, NF-κB and interferon-stimulated response element promoter activities, and interferon-β, DExD/H-box helicase 58 (DDX58), interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-8 mRNA expression. Conversely, silencing β-catenin decreased phosphorylated IRF-3 and NF-κB, NF-κB and IFIT1 promoter activities, and IFN-β, DDX58, IFIT1, IL-1β, TNF-α, and IL-8 mRNA levels in Marc-145 cells. Co-immunoprecipitation and immunofluorescence colocalization analyses confirmed that β-catenin interacted with NF-κB in Marc-145 cells. In conclusion, PRRSV infection activates the Wnt/β-catenin signaling pathway via Nsps 1α, 1β, 3, 4, 7, 10, and 12, and proteins encoded by ORFs 2b, 3, and 5. The Wnt/β-catenin pathway then inhibits PRRSV replication by enhancing the NF-κB-dependent innate immune response. These findings further our understanding of the role of the Wnt/β-catenin signaling pathway in regulating PRRSV replication and provide new insights into virus-host interactions.
Collapse
Affiliation(s)
- Jingyu Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong Province, 510642, People's Republic of China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Weidong Zhang
- Hospital of South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Wanli Chen
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Haoming Pan
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Yuchen Zeng
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Xingling Liang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Jun Ma
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong Province, 510642, People's Republic of China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong Province, 510642, People's Republic of China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China.
| |
Collapse
|
11
|
Zhu X, Wen L, Wang W, Xiao Q, Li B, He K. PCV2 inhibits the Wnt signalling pathway in vivo and in vitro. Vet Microbiol 2020; 247:108787. [PMID: 32768231 DOI: 10.1016/j.vetmic.2020.108787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 11/16/2022]
Abstract
Porcine circovirus type 2 (PCV2) is an important pathogen of the current pig industry. The Wnt signalling pathway plays an important role in the growth of young animals. In this study, we mainly elucidated the relationship between PCV2 and the Wnt signalling pathway. In an in vivo experiment in mice, we demonstrated the downregulatory effects of PCV2 infection on expression levels of downstream components of the Wnt signalling pathway. Weight loss in mice was reversed by activating the Wnt signalling pathway, and the body weight was still significantly higher than that in mice infected with PCV2. We detected levels of growth hormone (GH) in the liver and sera, which showed that GH was also downregulated in mice challenged with PCV2. Lithium chloride, the activator of Wnt signalling, upregulated GH, albeit to a significantly lesser degree than that in corresponding non-stimulated mock mice. In vitro studies showed that PCV2 infection downregulated protein expression of β-catenin and mRNA expression of matrix metallopeptidase-2 (Mmp2), downregulated protein expression of β-catenin in the cytoplasm and nucleus, and reduced the activity of the TCF/LEF promoter, demonstrating that PCV2 inhibited activation of the Wnt signalling pathway in vitro. Finally, we found that Rep protein of PCV2 might be responsible for the inhibitory effect.
Collapse
Affiliation(s)
- Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Qi Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Laboratory for Food Quality and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.
| |
Collapse
|
12
|
Du X, He W, He H, Wang H. Beta-catenin inhibits bovine parainfluenza virus type 3 replication via innate immunity pathway. BMC Vet Res 2020; 16:72. [PMID: 32127006 PMCID: PMC7055115 DOI: 10.1186/s12917-020-02291-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Bovine parainfluenza virus type 3 (BPIV3) is one of the important viral respiratory agents associated with the bovine respiratory disease complex (BRDC) in cattle. Previous study has demonstrated that infection of BPIV3 causes innate immune response within the host cell. β-catenin is a key component of the Wnt/β-catenin signal pathway which is involved in the regulation of interferon-beta (IFN-β) transcription. Some viruses can activate while others can inhibit the Wnt/β-catenin signaling pathway. However, the role of β-catenin in BPIV3 infection remains unclear. Results Here we found that the expression of β-catenin mRNA was up-regulated and β-catenin protein was down-regulated after BPIV3 infection in MDBK cells. Moreover, it was confirmed that overexpression of β-catenin suppressed BPIV3 replication and knockdown of β-catenin promoted viral replication, suggesting that β-catenin inhibits BPIV3 replication. Furthermore, IFN-β signal pathway and virus titer analysis using the GSK3β inhibitor (LiCl) revealed that Wnt/β-catenin can serve as a mechanism to suppress virus replication in infected cells. The results indicated that LiCl promoted the expression and accumulation in the nucleus of β-catenin, which further promoted the expression of IFN-β and OSA1 and suppressed BPIV3 replication. Most importantly, BPIV3 down-regulating β-catenin protein expression was due to degradation of GSK3β mediated proteasome pathway. Conclusions In summary, we discovered the relationship between β-catenin and BPIV3 replication. These results provided further insight into the study of BPIV3 pathogenesis.
Collapse
Affiliation(s)
- Xinying Du
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|