1
|
Schwarz C, Mathieu J, Laverde Gomez J, Miller MR, Tikhonova M, Hamor C, Alvarez PJJ. Isolation and Characterization of Six Novel Fusobacterium necrophorum Phages. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:63-75. [PMID: 39119211 PMCID: PMC11304844 DOI: 10.1089/phage.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Introduction Fusobacterium necrophorum, a human and animal pathogen, is the primary etiologic agent of bovine liver abscesses and a driving factor for prophylactic antibiotic use in the fed cattle industry. Considering calls to reduce agricultural antibiotic use, we isolated phages capable of killing F. necrophorum as an alternative or complementary biocontrol strategy. Methods Six novel phages (φFN37, φRTG5, φKSUM, φHugo, φPaco, and φBB) were isolated from rumen fluid or ruminal F. necrophorum isolates and subjected to host range testing on both F. necrophorum subspecies. Four F. necrophorum subspecies, necrophorum phages, were tested for cross-resistance and host growth inhibition individually and in pairs. Additionally, genomic sequencing, annotation, and analysis were performed.s. Results Four of six isolated phages were able to form lysogens, although all six contained lysogeny-related genes. φKSUM and φBB, did not form lysogens and were able to infect both subspecies. Four phages could infect F. necrophorum 8L1 (a liver abscess model challenge strain) in vitro. Genomic analysis showed that these phages belong to class Caudoviricetes with genome sizes ranging from 35 kbp to 111 kbp and GC values ranging from 26% to 36% and have extremely limited similarity to other deposited phage genomes infecting Fusobacterium or other genera. Conclusions Although all phages isolated contained sequences bearing similarities to genes implicated in lysogeny, the four selected for use in cocktails showed potential in inhibiting host growth, with several demonstrating promising attributes for biocontrol and therapeutic applications. Phage cocktails that may offer enhanced antibacterial activity were also identified, indicating the potential of some lysogenic phages to be adapted for biocontrol or therapeutic purposes when lytic phages are difficult to obtain.
Collapse
Affiliation(s)
- Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
- Sentinel Environmental, Houston, Texas, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
- Sentinel Environmental, Houston, Texas, USA
| | | | - Megan R. Miller
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | - Clark Hamor
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
- Sentinel Environmental, Houston, Texas, USA
| |
Collapse
|
2
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
3
|
Misson P, Bruder E, Cornuault JK, De Paepe M, Nicolas P, Demarre G, Lakisic G, Petit MA, Espeli O, Lecointe F. Phage production is blocked in the adherent-invasive Escherichia coli LF82 upon macrophage infection. PLoS Pathog 2023; 19:e1011127. [PMID: 36730457 PMCID: PMC9928086 DOI: 10.1371/journal.ppat.1011127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/14/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains are frequently recovered from stools of patients with dysbiotic microbiota. They have remarkable properties of adherence to the intestinal epithelium, and survive better than other E. coli in macrophages. The best studied of these AIEC is probably strain LF82, which was isolated from a Crohn's disease patient. This strain contains five complete prophages, which have not been studied until now. We undertook their analysis, both in vitro and inside macrophages, and show that all of them form virions. The Gally prophage is by far the most active, generating spontaneously over 108 viral particles per mL of culture supernatants in vitro, more than 100-fold higher than the other phages. Gally is also over-induced after a genotoxic stress generated by ciprofloxacin and trimethoprim. However, upon macrophage infection, a genotoxic environment, this over-induction is not observed. Analysis of the transcriptome and key steps of its lytic cycle in macrophages suggests that the excision of the Gally prophage continues to be repressed in macrophages. We conclude that strain LF82 has evolved an efficient way to block the lytic cycle of its most active prophage upon macrophage infection, which may participate to its good survival in macrophages.
Collapse
Affiliation(s)
- Pauline Misson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Emma Bruder
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Jeffrey K. Cornuault
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marianne De Paepe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Gaëlle Demarre
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Goran Lakisic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Olivier Espeli
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - François Lecointe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
4
|
Bujak K, Decewicz P, Kitowicz M, Radlinska M. Characterization of Three Novel Virulent Aeromonas Phages Provides Insights into the Diversity of the Autographiviridae Family. Viruses 2022; 14:1016. [PMID: 35632757 PMCID: PMC9145550 DOI: 10.3390/v14051016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we isolated and characterized three novel virulent Autographiviridae bacteriophages, vB_AspA_Bolek, vB_AspA_Lolek, and vB_AspA_Tola, which infect different Aeromonas strains. These three host-pathogen pairs were derived from the same sampling location-the arsenic-containing microbial mats of the Zloty Stok gold mine. Functional analysis showed they are psychrotolerant (4-25 °C), albeit with a much wider temperature range of propagation for the hosts (≤37 °C). Comparative genomic analyses revealed a high nucleotide and amino acid sequence similarity of vB_AspA_Bolek and vB_AspA_Lolek, with significant differences exclusively in the C-terminal region of their tail fibers, which might explain their host range discrimination. The protein-based phage network, together with a phylogenetic analysis of the marker proteins, allowed us to assign vB_AspA_Bolek and vB_AspA_Lolek to the Beijerinckvirinae and vB_AspA_Tola to the Colwellvirinae subfamilies, but as three novel species, due to their low nucleotide sequence coverage and identity with other known phage genomes. Global comparative analysis showed that the studied phages are also markedly different from most of the 24 Aeromonas autographiviruses known so far. Finally, this study provides in-depth insight into the diversity of the Autographiviridae phages and reveals genomic similarities between selected groups of this family as well as between autographiviruses and their relatives of other Caudoviricetes families.
Collapse
Affiliation(s)
| | | | | | - Monika Radlinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (K.B.); (P.D.); (M.K.)
| |
Collapse
|
5
|
Moura de Sousa JA, Pfeifer E, Touchon M, Rocha EPC. Causes and Consequences of Bacteriophage Diversification via Genetic Exchanges across Lifestyles and Bacterial Taxa. Mol Biol Evol 2021; 38:2497-2512. [PMID: 33570565 PMCID: PMC8136500 DOI: 10.1093/molbev/msab044] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophages (phages) evolve rapidly by acquiring genes from other phages. This results in mosaic genomes. Here, we identify numerous genetic transfers between distantly related phages and aim at understanding their frequency, consequences, and the conditions favoring them. Gene flow tends to occur between phages that are enriched for recombinases, transposases, and nonhomologous end joining, suggesting that both homologous and illegitimate recombination contribute to gene flow. Phage family and host phyla are strong barriers to gene exchange, but phage lifestyle is not. Even if we observe four times more recent transfers between temperate phages than between other pairs, there is extensive gene flow between temperate and virulent phages, and between the latter. These predominantly involve virulent phages with large genomes previously classed as low gene flux, and lead to the preferential transfer of genes encoding functions involved in cell energetics, nucleotide metabolism, DNA packaging and injection, and virion assembly. Such exchanges may contribute to the observed twice larger genomes of virulent phages. We used genetic transfers, which occur upon coinfection of a host, to compare phage host range. We found that virulent phages have broader host ranges and can mediate genetic exchanges between narrow host range temperate phages infecting distant bacterial hosts, thus contributing to gene flow between virulent phages, as well as between temperate phages. This gene flow drastically expands the gene repertoires available for phage and bacterial evolution, including the transfer of functional innovations across taxa.
Collapse
Affiliation(s)
| | - Eugen Pfeifer
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| |
Collapse
|
6
|
Terzian P, Olo Ndela E, Galiez C, Lossouarn J, Pérez Bucio RE, Mom R, Toussaint A, Petit MA, Enault F. PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genom Bioinform 2021; 3:lqab067. [PMID: 34377978 PMCID: PMC8341000 DOI: 10.1093/nargab/lqab067] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Viruses are abundant, diverse and ancestral biological entities. Their diversity is high, both in terms of the number of different protein families encountered and in the sequence heterogeneity of each protein family. The recent increase in sequenced viral genomes constitutes a great opportunity to gain new insights into this diversity and consequently urges the development of annotation resources to help functional and comparative analysis. Here, we introduce PHROG (Prokaryotic Virus Remote Homologous Groups), a library of viral protein families generated using a new clustering approach based on remote homology detection by HMM profile-profile comparisons. Considering 17 473 reference (pro)viruses of prokaryotes, 868 340 of the total 938 864 proteins were grouped into 38 880 clusters that proved to be a 2-fold deeper clustering than using a classical strategy based on BLAST-like similarity searches, and yet to remain homogeneous. Manual inspection of similarities to various reference sequence databases led to the annotation of 5108 clusters (containing 50.6 % of the total protein dataset) with 705 different annotation terms, included in 9 functional categories, specifically designed for viruses. Hopefully, PHROG will be a useful tool to better annotate future prokaryotic viral sequences thus helping the scientific community to better understand the evolution and ecology of these entities.
Collapse
Affiliation(s)
- Paul Terzian
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Eric Olo Ndela
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Clovis Galiez
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Robin Mom
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Ariane Toussaint
- Cellular and Molecular Microbiology, IBMM-DBM, Université libre de Bruxelles, 6041 Gosselies, Belgium
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Steczkiewicz K, Prestel E, Bidnenko E, Szczepankowska AK. Expanding Diversity of Firmicutes Single-Strand Annealing Proteins: A Putative Role of Bacteriophage-Host Arms Race. Front Microbiol 2021; 12:644622. [PMID: 33959107 PMCID: PMC8093625 DOI: 10.3389/fmicb.2021.644622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage-encoded single strand annealing proteins (SSAPs) are recombinases which can substitute the classical, bacterial RecA and manage the DNA metabolism at different steps of phage propagation. SSAPs have been shown to efficiently promote recombination between short and rather divergent DNA sequences and were exploited for in vivo genetic engineering mainly in Gram-negative bacteria. In opposition to the conserved and almost universal bacterial RecA protein, SSAPs display great sequence diversity. The importance for SSAPs in phage biology and phage-bacteria evolution is underlined by their role as key players in events of horizontal gene transfer (HGT). All of the above provoke a constant interest for the identification and study of new phage recombinase proteins in vivo, in vitro as well as in silico. Despite this, a huge body of putative ssap genes escapes conventional classification, as they are not properly annotated. In this work, we performed a wide-scale identification, classification and analysis of SSAPs encoded by the Firmicutes bacteria and their phages. By using sequence similarity network and gene context analyses, we created a new high quality dataset of phage-related SSAPs, substantially increasing the number of annotated SSAPs. We classified the identified SSAPs into seven distinct families, namely RecA, Gp2.5, RecT/Redβ, Erf, Rad52/22, Sak3, and Sak4, organized into three superfamilies. Analysis of the relationships between the revealed protein clusters led us to recognize Sak3-like proteins as a new distinct SSAP family. Our analysis showed an irregular phylogenetic distribution of ssap genes among different bacterial phyla and specific phages, which can be explained by the high rates of ssap HGT. We propose that the evolution of phage recombinases could be tightly linked to the dissemination of bacterial phage-resistance mechanisms (e.g., abortive infection and CRISPR/Cas systems) targeting ssap genes and be a part of the constant phage-bacteria arms race.
Collapse
Affiliation(s)
| | - Eric Prestel
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elena Bidnenko
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
8
|
Krishnan A, Burroughs AM, Iyer LM, Aravind L. Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res 2020; 48:10045-10075. [PMID: 32894288 DOI: 10.1093/nar/gkaa726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
ABC ATPases form one of the largest clades of P-loop NTPase fold enzymes that catalyze ATP-hydrolysis and utilize its free energy for a staggering range of functions from transport to nucleoprotein dynamics. Using sensitive sequence and structure analysis with comparative genomics, for the first time we provide a comprehensive classification of the ABC ATPase superfamily. ABC ATPases developed structural hallmarks that unambiguously distinguish them from other P-loop NTPases such as an alternative to arginine-finger-based catalysis. At least five and up to eight distinct clades of ABC ATPases are reconstructed as being present in the last universal common ancestor. They underwent distinct phases of structural innovation with the emergence of inserts constituting conserved binding interfaces for proteins or nucleic acids and the adoption of a unique dimeric toroidal configuration for DNA-threading. Specifically, several clades have also extensively radiated in counter-invader conflict systems where they serve as nodal nucleotide-dependent sensory and energetic components regulating a diversity of effectors (including some previously unrecognized) acting independently or together with restriction-modification systems. We present a unified mechanism for ABC ATPase function across disparate systems like RNA editing, translation, metabolism, DNA repair, and biological conflicts, and some unexpected recruitments, such as MutS ATPases in secondary metabolism.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|