1
|
Neuhaus GF, Aron AT, Isemonger EW, Petras D, Waterworth SC, Madonsela LS, Gentry EC, Siwe Noundou X, Kalinski JCJ, Polyzois A, Habiyaremye JC, Redick MA, Kwan JC, Dorrington RA, Dorrestein PC, McPhail KL. Environmental metabolomics characterization of modern stromatolites and annotation of ibhayipeptolides. PLoS One 2024; 19:e0303273. [PMID: 38781236 PMCID: PMC11115249 DOI: 10.1371/journal.pone.0303273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lithified layers of complex microbial mats known as microbialites are ubiquitous in the fossil record, and modern forms are increasingly identified globally. A key challenge to developing an understanding of microbialite formation and environmental role is how to investigate complex and diverse communities in situ. We selected living, layered microbialites (stromatolites) in a peritidal environment near Schoenmakerskop, Eastern Cape, South Africa to conduct a spatial survey mapping the composition and small molecule production of the microbial communities from environmental samples. Substrate core samples were collected from nine sampling stations ranging from the upper point of the freshwater inflow to the lower marine interface where tidal overtopping takes place. Substrate cores provided material for parallel analyses of microbial community diversity by 16S rRNA gene amplicon sequencing and metabolomics using LC-MS2. Species and metabolite diversities were correlated, and prominent specialized metabolites were targeted for preliminary characterization. A new series of cyclic hexadepsipeptides, named ibhayipeptolides, was most abundant in substrate cores of submerged microbialites. These results demonstrate the detection and identification of metabolites from mass-limited environmental samples and contribute knowledge about microbialite chemistry and biology, which facilitates future targeted studies of specialized metabolite function and biosynthesis.
Collapse
Affiliation(s)
- George F. Neuhaus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Allegra T. Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Eric W. Isemonger
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Samantha C. Waterworth
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Luthando S. Madonsela
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Emily C. Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | | | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Julius C. Habiyaremye
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Margaret A. Redick
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, United States of America
| | | | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
2
|
Clodoré L, Foucher F, Hickman-Lewis K, Sorieul S, Jouve J, Réfrégiers M, Collet G, Petoud S, Gratuze B, Westall F. Multi-Technique Characterization of 3.45 Ga Microfossils on Earth: A Key Approach to Detect Possible Traces of Life in Returned Samples from Mars. ASTROBIOLOGY 2024; 24:190-226. [PMID: 38393828 DOI: 10.1089/ast.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The NASA Mars 2020 Perseverance rover is actively exploring Jezero crater to conduct analyses on igneous and sedimentary rock targets from outcrops located on the crater floor (Máaz and Séítah formations) and from the delta deposits, respectively. The rock samples collected during this mission will be recovered during the Mars Sample Return mission, which plans to bring samples back to Earth in the 2030s to conduct in-depth studies using sophisticated laboratory instrumentation. Some of these samples may contain traces of ancient martian life that may be particularly difficult to detect and characterize because of their morphological simplicity and subtle biogeochemical expressions. Using the volcanic sediments of the 3.45 Ga Kitty's Gap Chert (Pilbara, Australia), containing putative early life forms (chemolithotrophs) and considered as astrobiological analogues for potential early Mars organisms, we document the steps required to demonstrate the syngenicity and biogenicity of such biosignatures using multiple complementary analytical techniques to provide information at different scales of observation. These include sedimentological, petrological, mineralogical, and geochemical analyses to demonstrate macro- to microscale habitability. New approaches, some unavailable at the time of the original description of these features, are used to verify the syngenicity and biogenicity of the purported fossil chemolithotrophs. The combination of elemental (proton-induced X-ray emission spectrometry) and molecular (deep-ultraviolet and Fourier transform infrared) analyses of rock slabs, thin sections, and focused ion beam sections reveals that the carbonaceous matter present in the samples is enriched in trace metals (e.g., V, Cr, Fe, Co) and is associated with aromatic and aliphatic molecules, which strongly support its biological origin. Transmission electron microscopy observations of the carbonaceous matter documented an amorphous nanostructure interpreted to correspond to the degraded remains of microorganisms and their by-products (extracellular polymeric substances, filaments…). Nevertheless, a small fraction of carbonaceous particles has signatures that are more metamorphosed. They probably represent either reworked detrital biological or abiotic fragments of mantle origin. This study serves as an example of the analytical protocol that would be needed to optimize the detection of fossil traces of life in martian rocks.
Collapse
Affiliation(s)
- Laura Clodoré
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
| | - Frédéric Foucher
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
- CNRS-Conditions Extrêmes et Matériaux: Haute Température et Irradiation, Orléans, France
| | - Keyron Hickman-Lewis
- Natural History Museum, London, United Kingdom
- Dipartimento BiGeA, Università di Bologna, Bologna, Italy
| | | | - Jean Jouve
- University of Bordeaux, CNRS, IN2P3, CENBG, Gradignan, France
| | | | - Guillaume Collet
- CNRS-Centre de Biophysique Moléculaire, Orléans, France
- Chair of Cosmetology, AgroParisTech Innovation, Orléans, France
| | | | - Bernard Gratuze
- CNRS-Institut de Recherche sur les ArchéoMATériaux, Orléans, France
| | | |
Collapse
|
3
|
Mlewski EC, Saona LA, Boidi FJ, Chiappero MF, Vaieretti MV, Soria M, Farías ME, Izquierdo AE. Exploring Soil Bacterial Diversity in Relation to Edaphic Physicochemical Properties of High-altitude Wetlands from Argentine Puna. MICROBIAL ECOLOGY 2023; 87:6. [PMID: 38030916 DOI: 10.1007/s00248-023-02316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
High Andean wetlands, particularly those known as vegas or bofedales, are essential conservation ecosystems due to their significant contribution to ecosystem services. The soil microbial communities in these ecosystems play a crucial role in fundamental processes such as decomposition and nutrient cycling, sustaining life in the region. However, at present, these microbial communities are poorly understood. In order to contribute to this knowledge, we aimed to characterize and compare the microbial communities from soils of seven Argentine Puna vegas and to analyze their association with soil physicochemical characteristics. Proteobacteria (Gamma and Alphaproteobacteria) was the dominant phylum across all vegas, followed in abundance by Actinobacteriota, Desulfobacterota, and Chloroflexi. Furthermore, the abundance of specific bacterial families and genera varied significantly between the vegas; some of them can be associated with plant growth-promoting bacteria such as Rhodomicrobium in La Quebradita and Quebrada del Diablo, Bacillus in Antofalla and Las Quinuas. Laguna Negra showed no shared ASVs with abundance in genera such as Sphingomonas and Pseudonocardia. The studied vegas also differed in their soil physicochemical properties; however, associations between the composition of microbial communities with the edaphic parameters measured were not found. These results suggest that other environmental factors (e.g., geographic, climatic, and plant communities' characteristics) could determine soil microbial diversity patterns. Further investigations are needed to be focused on understanding the composition and function of microorganisms in the soil associated with specific vegetation types in these high-altitude wetlands, which will provide valuable insights into the ecological dynamics of these ecosystems for conservation strategies.
Collapse
Affiliation(s)
- Estela Cecilia Mlewski
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Centro de Ecología y Recursos Naturales Renovables (CERNAR), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luis A Saona
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Flavia Jaquelina Boidi
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Rafaela, Rafaela, Argentina
- Instituto de Investigación de la Cadena Láctea (IDICAL, CONICET-INTA), Rafaela, Argentina
| | - M Fernanda Chiappero
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Victoria Vaieretti
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Soria
- PUNABIO S.A. Campus USP-T Av. Solano Vera y Camino a Villa Nougués San Pablo, Tucumán, Argentina
| | - María Eugenia Farías
- PUNABIO S.A. Campus USP-T Av. Solano Vera y Camino a Villa Nougués San Pablo, Tucumán, Argentina
| | - Andrea E Izquierdo
- Instituto Multidisciplinario de Biología Vegetal (IMBiV), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
- Facultad de Ciencias Naturales y Exactas e Instituto M. Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
4
|
Thawabteh AM, Naseef HA, Karaman D, Bufo SA, Scrano L, Karaman R. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins (Basel) 2023; 15:582. [PMID: 37756009 PMCID: PMC10535532 DOI: 10.3390/toxins15090582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Hani A Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
| | - Donia Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Rafik Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| |
Collapse
|
5
|
Beeler SR, Gomez FJ, Bradley AS. Geospatial insights into the controls of microbialite formation at Laguna Negra, Argentina. GEOBIOLOGY 2023; 21:229-243. [PMID: 36183342 DOI: 10.1111/gbi.12529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Microbialites provide a record of the interaction of microorganisms with their environment constituting a record of microbial life and environments through geologic time. Our capacity to interpret this record is limited by an incomplete understanding of the microbial, geochemical, and physical processes that influence microbialite formation and morphogenesis. The modern system Laguna Negra in Catamarca Province, Argentina contains microbialites in a zone of carbonate precipitation associated with physico-chemical gradients and variable microbial community structure, making it an ideal location to study how these processes interact to drive microbialite formation. In this study, we investigated the geospatial relationships between carbonate morphology, geochemistry, and microbial community at the macro- (decimeter) to mega- (meter) scale by combining high-resolution imagery with field observations. We mapped the distribution of carbonate morphologies and allochtonously-derived volcaniclasts and correlated these with sedimentary matrices and geochemical parameters. Our work shows that the macroscale distribution of different carbonate morphologies spatially correlates with microbial mat distributions-a result consistent with previous microscale observations. Specifically, microbialitic carbonate morphologies more commonly occur associated with microbial mats while abiotically derived carbonate morphologies were less commonly associated with microbial mats. Spatial variability in the size and abundance of mineralized structures was also observed, however, the processes controlling this variability remains unclear and likely represent a combination of microbial, geochemical, and physical processes. Likewise, the processes controlling the spatial distribution of microbial mats at Laguna Negra are also unresolved. Our results suggest that in addition to the physical drivers observed in other modern environments, variability in the spatial distribution of microbialites and other carbonate morphologies at the macro- to megascale can be controlled by microbial processes. Overall, this study provides insight into the interpretation of microbialite occurrence and distributions in the geologic record and highlights the utility of geospatial statistics to probe the controls of microbialite formation in other environments.
Collapse
Affiliation(s)
- Scott R Beeler
- Department of Earth and Planetary Sciences, Washington University in St. Louis, Saint Louis, Missouri, USA
- Engineering and Mining Experiment Station, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Fernando J Gomez
- Facultad de Ciencias Exactas, CICTERRA-CONICET, Fisicas, y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alexander S Bradley
- Department of Earth and Planetary Sciences, Washington University in St. Louis, Saint Louis, Missouri, USA
| |
Collapse
|
6
|
Wang H, Xiao E, Latif K. A Case Study on the Co-Occurrence of Oncoids and Ooids in the Cambrian Miaolingian Series, North China Platform. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Community Vertical Composition of the Laguna Negra Hypersaline Microbial Mat, Puna Region (Argentinean Andes). BIOLOGY 2022; 11:biology11060831. [PMID: 35741352 PMCID: PMC9220024 DOI: 10.3390/biology11060831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The Altiplano-Puna region is a high-altitude plateau in South America characterized by extreme conditions, including the highest UV incidence on Earth. The Laguna Negra is a hypersaline lake located in the Catamarca Province, northwestern Argentina, where stromatolites and other microbialites are found, and where life is mostly restricted to microbial mats. In this study, a particular microbial mat that covers the shore of the lake was explored, to unravel its layer-by-layer vertical structure in response to the environmental stressors therein. Microbial community composition was assessed by high-throughput 16S rRNA gene sequencing and pigment content analyses, complemented with microscopy tools to characterize its spatial arrangement within the mat. The top layer of the mat has a remarkable UV-tolerance feature, characterized by the presence of Deinococcus-Thermus and deinoxanthin, which might reflect a shielding strategy to cope with high UV radiation. Chloroflexi and Deltaproteobacteria were abundant in the second and third underlying layers, respectively. The bottom layer harbors copious Halanaerobiaeota. Subspherical aggregates composed of calcite, extracellular polymeric substances, abundant diatoms, and other microorganisms were observed all along the mat as the main structural component. This detailed study provides insights into the strategies of microbial communities to thrive under high UV radiation and hypersalinity in high-altitude lakes in the Altiplano-Puna region.
Collapse
|
8
|
Skoog EJ, Moore KR, Gong J, Ciccarese D, Momper L, Cutts EM, Bosak T. Metagenomic, (bio)chemical, and microscopic analyses reveal the potential for the cycling of sulfated EPS in Shark Bay pustular mats. ISME COMMUNICATIONS 2022; 2:43. [PMID: 37938726 PMCID: PMC9723792 DOI: 10.1038/s43705-022-00128-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 05/24/2023]
Abstract
Cyanobacteria and extracellular polymeric substances (EPS) in peritidal pustular microbial mats have a two-billion-year-old fossil record. To understand the composition, production, degradation, and potential role of EPS in modern analogous communities, we sampled pustular mats from Shark Bay, Australia and analyzed their EPS matrix. Biochemical and microscopic analyses identified sulfated organic compounds as major components of mat EPS. Sulfur was more abundant in the unmineralized regions with cyanobacteria and less prevalent in areas that contained fewer cyanobacteria and more carbonate precipitates. Sequencing and assembly of the pustular mat sample resulted in 83 high-quality metagenome-assembled genomes (MAGs). Metagenomic analyses confirmed cyanobacteria as the primary sources of these sulfated polysaccharides. Genes encoding for sulfatases, glycosyl hydrolases, and other enzymes with predicted roles in the degradation of sulfated polysaccharides were detected in the MAGs of numerous clades including Bacteroidetes, Chloroflexi, Hydrogenedentes, Myxococcota, Verrucomicrobia, and Planctomycetes. Measurable sulfatase activity in pustular mats and fresh cyanobacterial EPS confirmed the role of sulfatases in the degradation of sulfated EPS. These findings suggest that the synthesis, modification, and degradation of sulfated polysaccharides influence microbial interactions, carbon cycling, and biomineralization processes within peritidal pustular microbial mats.
Collapse
Affiliation(s)
- Emilie J Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Kelsey R Moore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA, 91125, USA
| | - Jian Gong
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Davide Ciccarese
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lily Momper
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Exponent, Inc., Pasadena, CA, 91106, USA
| | - Elise M Cutts
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Successive Modes of Carbonate Precipitation in Microbialites along the Hydrothermal Spring of La Salsa in Laguna Pastos Grandes (Bolivian Altiplano). GEOSCIENCES 2022. [DOI: 10.3390/geosciences12020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interpreting the paleoecosystems of ancient microbialites relies on our understanding of how modern microbialites form in relation with the bio-physico-chemical conditions of their environment. In this study, we investigated the formation of modern carbonate microbialites in the hydrothermal system of La Salsa in Laguna Pastos Grandes (Bolivia), which spans a wide range of physicochemical conditions and associated microbial communities. By combining dissolved inorganic carbon (DIC) isotope mass balance modeling, analysis of carbonates solubility diagram, and imaging of the microorganisms–mineral assemblages within microbial mats, we found that several modes of carbonate precipitation dominate in distinct portions of the hydrothermal system. (1) In high-[DIC] waters, undersaturated to slightly saturated with respect to calcite, cyanobacterial calcification is promoted by CO2 degassing and photosynthetic activity within the microbial mats. (2) In alkaline waters undergoing sustained evaporation, the precipitation of an amorphous calcium carbonate phase seems to control the water a(Ca2+)/a(CO32−) ratio and to serve as a precursor to micritic calcite formation in microbial mats. (3) In saline ephemeral ponds, where the carbonate precipitation is the highest, calcite precipitation probably occurs through a different pathway, leading to a different calcite texture, i.e., aggregates of rhombohedral crystals.
Collapse
|
10
|
Gong J, Munoz-Saez C, Wilmeth DT, Myers KD, Homann M, Arp G, Skok JR, van Zuilen MA. Morphogenesis of digitate structures in hot spring silica sinters of the El Tatio geothermal field, Chile. GEOBIOLOGY 2022. [PMID: 34590770 DOI: 10.6084/m9.figshare.12957797.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In silica-rich hot spring environments, internally laminated, digitate sinter deposits are often interpreted as bio-mediated structures. The organic components of microbial communities (cell surfaces, sheaths and extracellular polymeric substances) can act as templates for silica precipitation, therefore influencing digitate sinter morphogenesis. In addition to biologic surface-templating effects, various microenvironmental factors (hydrodynamics, local pH and fluctuating wind patterns) can also influence silica precipitation, and therefore the morphology of resulting digitate sinters. Digitate sinter morphology thus depends on the dynamic interplay between microenvironmentally driven silica precipitation and microbial growth, but the relative contributions of both factors are a topic of continuing research. Here we present a detailed study of digitate silica sinters in distal, low-temperature regimes of the El Tatio geothermal field, Chile. This high-altitude geothermal field is extremely arid and windy, and has one of the highest silica precipitation rates found in the world. We find that digitate silica sinters at El Tatio always accrete into the prevailing eastward wind direction and exhibit laminar growth patterns coinciding with day-night cycles of wind- and thermally driven evaporation and rewetting. Subaerial parts of digitate sinters lack preserved organics and sinter textures that would indicate past microbial colonization, while filamentous cyanobacteria with resistant, silicified sheaths only inhabit subaqueous cavities that crosscut the primary laminations. We conclude that, although fragile biofilms of extremophile micro-organisms may have initially been present and templated silica precipitation at the tips of these digitate sinters, the saltation of sand grains and precipitation of silica by recurrent wind- and thermally driven environmental forcing at El Tatio are important, if not dominant factors shaping the morphology of these digitate structures. Our study sheds light on the relative contributions of biogenic and abiogenic factors in sinter formation in geothermal systems, with geobiological implications for the cautious interpretation of stromatolite-like features in ancient silica deposits on Earth and Mars.
Collapse
Affiliation(s)
- Jian Gong
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Dylan T Wilmeth
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
- Equipe Géomicrobiologie, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Kimberly D Myers
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | - Martin Homann
- Department of Earth Sciences, University College London, London, UK
| | - Gernot Arp
- Geobiology Division, Geoscience Centre, Georg-August-Universität Göttingen, Göttingen, Germany
| | - John R Skok
- SETI Institute, Mountain View, California, USA
| | - Mark A van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
11
|
Gong J, Munoz‐Saez C, Wilmeth DT, Myers KD, Homann M, Arp G, Skok JR, van Zuilen MA. Morphogenesis of digitate structures in hot spring silica sinters of the El Tatio geothermal field, Chile. GEOBIOLOGY 2022; 20:137-155. [PMID: 34590770 PMCID: PMC9292339 DOI: 10.1111/gbi.12471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 05/19/2023]
Abstract
In silica-rich hot spring environments, internally laminated, digitate sinter deposits are often interpreted as bio-mediated structures. The organic components of microbial communities (cell surfaces, sheaths and extracellular polymeric substances) can act as templates for silica precipitation, therefore influencing digitate sinter morphogenesis. In addition to biologic surface-templating effects, various microenvironmental factors (hydrodynamics, local pH and fluctuating wind patterns) can also influence silica precipitation, and therefore the morphology of resulting digitate sinters. Digitate sinter morphology thus depends on the dynamic interplay between microenvironmentally driven silica precipitation and microbial growth, but the relative contributions of both factors are a topic of continuing research. Here we present a detailed study of digitate silica sinters in distal, low-temperature regimes of the El Tatio geothermal field, Chile. This high-altitude geothermal field is extremely arid and windy, and has one of the highest silica precipitation rates found in the world. We find that digitate silica sinters at El Tatio always accrete into the prevailing eastward wind direction and exhibit laminar growth patterns coinciding with day-night cycles of wind- and thermally driven evaporation and rewetting. Subaerial parts of digitate sinters lack preserved organics and sinter textures that would indicate past microbial colonization, while filamentous cyanobacteria with resistant, silicified sheaths only inhabit subaqueous cavities that crosscut the primary laminations. We conclude that, although fragile biofilms of extremophile micro-organisms may have initially been present and templated silica precipitation at the tips of these digitate sinters, the saltation of sand grains and precipitation of silica by recurrent wind- and thermally driven environmental forcing at El Tatio are important, if not dominant factors shaping the morphology of these digitate structures. Our study sheds light on the relative contributions of biogenic and abiogenic factors in sinter formation in geothermal systems, with geobiological implications for the cautious interpretation of stromatolite-like features in ancient silica deposits on Earth and Mars.
Collapse
Affiliation(s)
- Jian Gong
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Dylan T. Wilmeth
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
- Equipe GéomicrobiologieInstitut Universitaire Européen de la MerPlouzanéFrance
| | - Kimberly D. Myers
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
| | - Martin Homann
- Department of Earth SciencesUniversity College LondonLondonUK
| | - Gernot Arp
- Geobiology DivisionGeoscience CentreGeorg‐August‐Universität GöttingenGöttingenGermany
| | | | - Mark A. van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
| |
Collapse
|
12
|
Wang YW, Ren WT, Xu YY, Zhang XQ. Muriiphilus fusiformis gen. nov., sp. nov., a novel non-marine bacterium belonging to the Roseobacter group, and reclassification of Maritimibacter lacisalsi (Zhong et al. 2015) as Muriicola lacisalsi gen. nov., comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34181513 DOI: 10.1099/ijsem.0.004859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, Gram-stain-negative, non-sporulating, flagellated and spindle-like bacterium, designated HY14T, was isolated from a pickle-processing factory wastewater sample. The isolate chemoheterotrophically grew at 4-42 °C (optimum, 35 °C) and pH 5.5-9.0 (optimum, pH 6.0-6.5). Salt was required for growth (0.5-12 % NaCl, w/v). A deep brown and water-soluble uncharacterized pigment was produced when grown in certain media. The predominant fatty acids (>5 %) included C16 : 0, C18 : 1 ω7c, 11-methyl C18 : 1 ω7c and C19 : 0 cyclo ω8c. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids, two unidentified phospholipids, two unidentified glycolipids and five unknown lipids. The major isoprenoid quinone was ubiquinone-10. Pairwise alignment based on 16S rRNA gene sequences indicated that strain HY14T had the highest sequence similarity to genera Maritimibacter (95.61-96.05 %) and Boseongicola (95.82 %). Phylogenetic analysis based on core genome illustrated that strain HY14T formed a monophyletic lineage with members of the genus Maritimibacter in the clade of the Roseobacter group in the family Rhodobacteraeceae. The core-gene average amino acid identity used to define bacterial genera by a threshold of 60-80 % was calculated to be 68.56-76.5 % between HY14T and closely related taxa. Several genomic characteristics, such as carrying two RuBisCO-mediated pathways and different osmoprotectant transport pathways, exhibited the genotypic discrepancies of strain HY14T. Based on the polyphasic taxonomic characterization, strain HY14T is considered to represent a novel species of a novel genus belonging to the family Rhodobacteraeceae, for which the name Muriiphilus fusiformis gen. nov., sp. nov. is proposed. The type strain is HY14T (=CGMCC 1.15973T=KCTC 52499T). Maritimibacter lacisalsi (Zhong et al. 2015) is considered to diverge from Maritimibacter alkaliphilus at the genus level, and should be reassigned as a novel genus, for which the name Muriicola lacisalsi gen. nov., comb. nov. is proposed.
Collapse
Affiliation(s)
- Yu-Wen Wang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Wen-Ting Ren
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yuan-You Xu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xin-Qi Zhang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, PR China
| |
Collapse
|
13
|
Waterworth SC, Isemonger EW, Rees ER, Dorrington RA, Kwan JC. Conserved bacterial genomes from two geographically isolated peritidal stromatolite formations shed light on potential functional guilds. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:126-137. [PMID: 33369160 PMCID: PMC8408775 DOI: 10.1111/1758-2229.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 05/24/2023]
Abstract
Stromatolites are complex microbial mats that form lithified layers. Fossilized stromatolites are the oldest evidence of cellular life on Earth, dating back over 3.4 billion years. Modern stromatolites are relatively rare but may provide clues about the function and evolution of their ancient counterparts. In this study, we focus on peritidal stromatolites occurring at Cape Recife and Schoenmakerskop on the southeastern South African coastline, the former being morphologically and structurally similar to fossilized phosphatic stromatolites formations. Using assembled shotgun metagenomic analysis, we obtained 183 genomic bins, of which the most dominant taxa were from the Cyanobacteria phylum. We identified functional gene sets in genomic bins conserved across two geographically isolated stromatolite formations, which included relatively high copy numbers of genes involved in the reduction of nitrates and phosphatic compounds. Additionally, we found little evidence of Archaeal species in these stromatolites, suggesting that they may not play an important role in peritidal stromatolite formations, as proposed for hypersaline formations.
Collapse
Affiliation(s)
- Samantha C. Waterworth
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Eric W. Isemonger
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Evan R. Rees
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Rosemary A. Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| |
Collapse
|
14
|
Biotic–Abiotic Influences on Modern Ca–Si-Rich Hydrothermal Spring Mounds of the Pastos Grandes Volcanic Caldera (Bolivia). MINERALS 2019. [DOI: 10.3390/min9060380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lacustrine-to-palustrine Pastos Grandes Laguna (Bolivia) is located in a volcanic caldera fed by active hot springs, with a carbonate crust extending over 40 km2. An integrated approach based on geology and hydrochemistry was used to characterize La Salsa, one of its hydrothermal systems, composed of a flat mound with a hydrothermal discharge. The mound is composed of carbonate–diatom aggregates, forming muds that accumulate and undergo slight swelling. The discharge area along the hydrothermal pathway exhibits several facies and microfabrics, with considerable biological activity and microbialite development. Both the downstream evolution of carbonate and silica content in sediments and the distribution of microbialites can be linked to changes in biotic-abiotic processes occurring along the pathway. The spatial distribution of microbialites and their morphologies are related to hydrodynamic conditions, the nature of the substrate on which they grow and, to a lesser extent, to the accommodation space available. The evolution of the physicochemical properties of the water and biological activity mainly impact mineral precipitation but also affect microbialite morphologies and microstructures. This atypical Si- and Ca-rich hydrothermal system therefore provides insights into the diversity of environmental, chemical, and biotic factors controlling mineralization, which also responds to independent thermodynamic controls.
Collapse
|
15
|
Buongiorno J, Gomez FJ, Fike DA, Kah LC. Mineralized microbialites as archives of environmental evolution, Laguna Negra, Catamarca Province, Argentina. GEOBIOLOGY 2019; 17:199-222. [PMID: 30548907 DOI: 10.1111/gbi.12327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Environmental fluctuations are recorded in a variety of sedimentary archives of lacustrine depositional systems. Geochemical signals recovered from bottom sediments in closed-basin lakes are among the most sensitive paleoenvironmental indicators and are commonly used in reconstructing lake evolution. Microbialites (i.e., organosedimentary deposits accreted through microbial trapping and binding of detrital sediment or in situ mineral precipitation on organics [Palaios, 2, 1987, 241]), however, have been largely overlooked as paleoenvironmental repositories. Here, we investigate concentrically laminated mineralized microbialites from Laguna Negra, a high-altitude (4,100 m above sea level) hypersaline, closed-basin lake in northwestern Argentina, and explore the potential for recovery of environmental signals from these unique sedimentary archives. Spatial heterogeneity in hydrological regime helps define zones inside Laguna Negra, each with their own morphologically distinct microbialite type. Most notably, platey microbialites (in Zone 3A) are precipitated by evaporative concentration processes, while discoidal oncolites (in Zone 3C) are interpreted result from fluid mixing and biologically mediated nucleation. This spatial heterogeneity is reflected in petrographically distinct carbonate fabrics: micritic, botryoidal, and isopachous. Fabric type is interpreted to reflect a combination of physical and biological influences during mineralization, and paired C-isotope measurement of carbonate and organic matter supports ecological differences as a dominant control on C-isotopic evolution between zones. Laminae of Laguna Negra microbialites preserve a range of δ13 Ccarb from +5.75‰ to +18.25‰ and δ18 Ocarb from -2.04‰ to +9.28‰. Temporal trends of lower carbon and oxygen isotopic compositions suggest that the influence of CO2 degassing associated with evaporation has decreased over time. Combined, these results indicate that microbialite archives can provide data that aid in interpretation of both lake paleohydrology and paleoenvironmental change.
Collapse
Affiliation(s)
- Joy Buongiorno
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee
| | - Fernando J Gomez
- Centro de Investigaciones en Ciencias de la Tierra Cordoba, CONICET Cordoba, Córdoba, Argentina
| | - David A Fike
- Department of Earth & Planetary Sciences, Washington University, St. Louis, Missouri
| | - Linda C Kah
- Department of Earth & Planetary Sciences, The University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
16
|
White RA, Soles SA, Gavelis G, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Eurythermal Firmicute Exiguobacterium chiriqhucha Strain RW2 Isolated From a Freshwater Microbialite, Widely Adaptable to Broad Thermal, pH, and Salinity Ranges. Front Microbiol 2019; 9:3189. [PMID: 30671032 PMCID: PMC6331483 DOI: 10.3389/fmicb.2018.03189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022] Open
Abstract
Members of the genus Exiguobacterium are found in diverse environments from marine, freshwaters, permafrost to hot springs. Exiguobacterium can grow in a wide range of temperature, pH, salinity, and heavy-metal concentrations. We characterized Exiguobacterium chiriqhucha strain RW2 isolated from a permanently cold freshwater microbialite in Pavilion Lake, British Columbia using metabolic assays, genomics, comparative genomics, phylogenetics, and fatty acid composition. Strain RW2 has the most extensive growth range for temperature (4–50°C) and pH (5–11) of known Exiguobacterium isolates. Strain RW2 genome predicts pathways for wide differential thermal, cold and osmotic stress using cold and heat shock cascades (e.g., csp and dnaK), choline and betaine uptake/biosynthesis (e.g., opu and proU), antiporters (e.g., arcD and nhaC Na+/K+), membrane fatty acid unsaturation and saturation. Here, we provide the first complete genome from Exiguobacterium chiriqhucha strain RW2, which was isolated from a freshwater microbialite. Its genome consists of a single 3,019,018 bp circular chromosome encoding over 3,000 predicted proteins, with a GC% content of 52.1%, and no plasmids. In addition to growing at a wide range of temperatures and salinities, our findings indicate that RW2 is resistant to sulfisoxazole and has the genomic potential for detoxification of heavy metals (via mercuric reductases, arsenic resistance pumps, chromate transporters, and cadmium-cobalt-zinc resistance genes), which may contribute to the metabolic potential of Pavilion Lake microbialites. Strain RW2 could also contribute to microbialite formation, as it is a robust biofilm former and encodes genes involved in the deamination of amino acids to ammonia (i.e., L-asparaginase/urease), which could potentially boost carbonate precipitation by lowering the local pH and increasing alkalinity. We also used comparative genomic analysis to predict the pathway for orange pigmentation that is conserved across the entire Exiguobacterium genus, specifically, a C30 carotenoid biosynthesis pathway is predicted to yield diaponeurosporene-4-oic acid as its final product. Carotenoids have been found to protect against ultraviolet radiation by quenching reactive oxygen, releasing excessive light energy, radical scavenging, and sunscreening. Together these results provide further insight into the potential of Exiguobacterium to exploit a wide range of environmental conditions, its potential roles in ecosystems (e.g., microbialites/microbial mats), and a blueprint model for diverse metabolic processes.
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|