1
|
Chen L, Wei M, Zhou B, Wang K, Zhu E, Cheng Z. The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections. Vet Res 2024; 55:107. [PMID: 39227990 PMCID: PMC11373180 DOI: 10.1186/s13567-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024] Open
Abstract
The endoplasmic reticulum (ER) is a unique organelle responsible for protein synthesis and processing, lipid synthesis in eukaryotic cells, and the replication of many animal viruses is closely related to ER. A considerable number of viral proteins are synthesised during viral infection, resulting in the accumulation of unfolded and misfolded proteins in ER, which in turn induces endoplasmic reticulum stress (ERS). ERS further drives three signalling pathways (PERK, IRE1, and ATF6) of the cellular unfolded protein response (UPR) to respond to the ERS. In numerous studies, ERS has been shown to mediate autophagy, a highly conserved cellular degradation mechanism to maintain cellular homeostasis in eukaryotic cells, through the UPR to restore ER homeostasis. ERS-mediated autophagy is closely linked to the occurrence and development of numerous viral diseases in animals. Host cells can inhibit viral replication by regulating ERS-mediated autophagy, restoring the ER's normal physiological process. Conversely, many viruses have evolved strategies to exploit ERS-mediated autophagy to achieve immune escape. These strategies include the regulation of PERK-eIF2α-Beclin1, PERK-eIF2α-ATF4-ATG12, IRE1α-JNK-Beclin1, and other signalling pathways, which provide favourable conditions for the replication of animal viruses in host cells. The ERS-mediated autophagy pathway has become a hot topic in animal virological research. This article reviews the most recent research regarding the regulatory functions of ERS-mediated autophagy pathways in animal viral infections, emphasising the underlying mechanisms in the context of different viral infections. Furthermore, it considers the future direction and challenges in the development of ERS-mediated autophagy targeting strategies for combating animal viral diseases, which will contribute to unveiling their pathogenic mechanism from a new perspective and provide a scientific reference for the discovery and development of new antiviral drugs and preventive strategies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Miaozhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Li W, You G, Haiyilati A, Wang H, Jiao H, Wang Y, Gao L, Cao H, Li X, Zheng SJ. Critical Role of Viral Protein Hexon in Hypervirulent Fowl Adenovirus Serotype-4-Induced Autophagy by Interaction with BAG3 and Promotion of Viral Replication in LMH Cells. J Virol 2023; 97:e0028423. [PMID: 37255472 PMCID: PMC10308884 DOI: 10.1128/jvi.00284-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/13/2023] [Indexed: 06/01/2023] Open
Abstract
Hepatitis-pericardial syndrome (HHS) is an acute highly infectious avian disease caused by fowl adenovirus serotype 4 (FAdV-4), characterized by fulminant hepatitis and hydropericardium in broilers. Since 2015, a widespread epidemic has occurred in China due to the emergence of hypervirulent FAdV-4 (HPFAdV-4), causing huge losses to the stakeholders. However, the pathogenesis of HPFAdV-4 and the host responses to its infection remain elusive. Here, we show that infection of leghorn male hepatocellular (LMH) cells by HPFAdV-4 induced complete autophagy in cells and that the autophagy induced by recombinant HPFAdV-4-ON1 (rHPFAdV-4-ON1), a viral strain generated by replacing the hexon gene of wild-type HPFAdV-4 (HPFAdV-4-WT) with the one of nonpathogenic strain FAdV-4-ON1, was remarkably mitigated compared to that of the rHPFAdV-4-WT control, suggesting that HPFAdV-4 hexon is responsible for virus-induced autophagy. Importantly, we found that hexon interacted with a cellular protein, BAG3, a host protein that initiates autophagy, and that BAG3 expression increased in cells infected with HPFAdV-4. Furthermore, knockdown of BAG3 by RNA interference (RNAi) significantly inhibited HPFAdV-4- or hexon-induced autophagy and suppressed viral replication. On the contrary, expression of hexon markedly upregulated the expression of BAG3 via activating the P38 signaling pathway, triggering autophagy. Thus, these findings reveal that HPFAdV-4 hexon interacts with the host protein BAG3 and promotes BAG3 expression by activating P38 signaling pathway, thereby inducing autophagy and enhancing viral proliferation, which immensely furthers our understanding of the pathogenesis of HPFAdV-4 infection. IMPORTANCE HHS, mainly caused by HPFAdV-4, has caused large economic losses to the stakeholders in recent years. Infection of leghorn male hepatocellular (LMH) cells by HPFAdV-4 induced complete autophagy that is essential for HPFAdV-4 replication. By a screening strategy, the viral protein hexon was found responsible for virus-induced autophagy in cells. Importantly, hexon was identified as a factor promoting viral replication by interaction with BAG3, an initiator of host cell autophagy. These findings will help us to better understand the host response to HPFAdV-4 infection, providing a novel insight into the pathogenesis of HPFAdV-4 infection.
Collapse
Affiliation(s)
- Wei Li
- National Key Laboratory of Veterinary Public Health Security, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guangju You
- National Key Laboratory of Veterinary Public Health Security, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Areayi· Haiyilati
- National Key Laboratory of Veterinary Public Health Security, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongnuan Wang
- National Key Laboratory of Veterinary Public Health Security, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huixuan Jiao
- National Key Laboratory of Veterinary Public Health Security, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- National Key Laboratory of Veterinary Public Health Security, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Wang T, Wang C, Han J, Hou X, Hu R, Chang W, Wang L, Qi X, Wang J. β-catenin facilitates fowl adenovirus serotype 4 replication through enhancing virus-induced autophagy. Vet Microbiol 2023; 276:109617. [PMID: 36469999 DOI: 10.1016/j.vetmic.2022.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
β-catenin is a key component of the Wnt/β-catenin signal transduction cascade which is a highly conserved signaling pathway in eukaryotes. Increasing evidence suggests that the Wnt/β-catenin signaling pathway is involved in the infection of many viruses. However, its role in fowl adenovirus serotype 4 (FAdV-4) replication remains unclear. In the present study, we showed that FAdV-4 infection increased the expression of β-catenin and promoted the nuclear translocation of β-catenin. Overexpression of β-catenin and LiCl treatment stimulated the accumulation of β-catenin in the nucleus, and then facilitated FAdV-4 replication. Conversely, repression of β-catenin by inhibitors and siRNA significantly inhibited FAdV-4 replication. Furthermore, inhibition of autophagy by 3-Methyladenine (3-MA) suppressed the FAdV-4 replication, and repression of β-catenin inhibited the FAdV-4-triggered autophagy. In conclusion, the nuclear translocation of β-catenin benefits FAdV-4 replication, and suppression of β-catenin limits FAdV-4 production by inhibiting FAdV-4-induced autophagy. These findings indicated that β-catenin is an important regulator of FAdV-4 replication which can serve as a potential target for anti-FAdV-4 agents.
Collapse
Affiliation(s)
- Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chongyang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinjie Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Wu X, Jia R, Wang M, Chen S, Liu M, Zhu D, Zhao X, Yang Q, Wu Y, Yin Z, Zhang S, Huang J, Zhang L, Liu Y, Yu Y, Pan L, Tian B, Rehman MU, Chen X, Cheng A. Downregulation of microRNA-30a-5p contributes to the replication of duck enteritis virus by regulating Beclin-1-mediated autophagy. Virol J 2019; 16:144. [PMID: 31771604 PMCID: PMC6880601 DOI: 10.1186/s12985-019-1250-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) is increasingly recognized as an important element in regulating virus-host interactions. Our previous results showed that cellular miR-30a-5p was significantly downregulated after duck enteritis virus (DEV) infection cell. However, whehter or not the miR-30a-5p is involved in DEV infection has not been known. METHODS Quantitative reverse-transcription PCR (qRT-PCR) was used to measure the expression levels of miRNAs(miR-30a-5p) and Beclin-1 mRNA. The miR-30a-5p - Beclin-1 target interactions were determined by Dual luciferase reporter assay (DLRA). Western blotting was utilized to analyze Beclin-1-mediated duck embryo fibroblast (DEF) cells autophagy activity. DEV titers were estimated by the median tissue culture infective dose (TCID50). RESULTS The miR-30a-5p was significantly downregulated and the Beclin-1 mRNA was significantly upregulated in DEV-infected DEF cells. DLRA confirmed that miR-30a-5p directly targeted the 3'- UTR of the Beclin-1 gene. Overexpression of miR-30a-5p significantly reduced the expression level of Beclin-1protein (p < 0.05), leading to the decrease of Beclin-1-mediated autophagy activity, which ultimately suppressed DEV replication (P < 0.05). Whereas transfection of miR-30a-5p inhibitor increased Beclin-1-mediated autophagy and triggered DEV replication during the whole process of DEV infection (P < 0.01). CONCLUSIONS This study shows that miR-30a-5p can inhibit DEV replication through reducing autophagy by targeting Beclin-1. These findings suggest a new insight into virus-host interaction during DEV infection and provide a potential new antiviral therapeutic strategy against DEV infection.
Collapse
Affiliation(s)
- Xianglong Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
7
|
Song Y, Wei Q, Liu Y, Feng H, Chen Y, Wang Y, Bai Y, Xing G, Deng R, Zhang G. Unravelling the receptor binding property of egg drop syndrome virus (EDSV) from the crystal structure of EDSV fiber head. Int J Biol Macromol 2019; 139:587-595. [PMID: 31381914 DOI: 10.1016/j.ijbiomac.2019.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022]
Abstract
Egg drop syndrome virus (EDSV) is an avian adenovirus that causes markedly decrease in egg production, and in the quality of the eggs when it infects chickens. Until now, EDSV virus-cell interactions are poorly understood, and the cellular receptor is still unknown. In the present study, we determined the atomic structure of the fiber head of EDSV (residues 377-644) at 2.74 Å resolution. Structure comparison with the (chick embryo lethal orphan) CELO long fiber head and human adenovirus fiber heads reveals that the avian adenovirus may interact with the same attachment factor in a unique fashion. Based on the previous studies of CELO virus, we assumed that the chicken coxsackievirus and adenovirus receptor (CAR) may be the attachment factor. We then demonstrate that the chicken CAR serves as a cellular attachment factor for EDSV based on three lines of evidences. Taken together, the results presented here are helpful for further exploring the pathogenesis related to the interaction between EDSV and host cells, and may be used for vaccine development and intervention strategies against EDSV infection.
Collapse
Affiliation(s)
- Yapeng Song
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|