1
|
Trinidad-Cruz JR, Rincón-Enríquez G, Evangelista-Martínez Z, López-Pérez L, Quiñones-Aguilar EE. Isolation, Antibacterial Activity and Molecular Identification of Avocado Rhizosphere Actinobacteria as Potential Biocontrol Agents of Xanthomonas sp. Microorganisms 2024; 12:2199. [PMID: 39597588 PMCID: PMC11596542 DOI: 10.3390/microorganisms12112199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Actinobacteria, especially the genus Streptomyces, have been shown to be potential biocontrol agents for phytopathogenic bacteria. Bacteria spot disease caused by Xanthomonas spp. may severely affect chili pepper (Capsicum annuum) crops with a subsequent decrease in productivity. Therefore, the objective of the study was to isolate rhizospheric actinobacteria from soil samples treated by physical methods and evaluate the inhibitory activity of the isolates over Xanthomonas. Initially, soil samples collected from avocado tree orchards were treated by dry heat air and microwave irradiation; thereafter, isolation was implemented. Then, antibacterial activity (AA) of isolates was evaluated by the double-layer agar method. Furthermore, the positive/negative effect on AA for selected isolates was evaluated on three culture media (potato-dextrose agar, PDA; yeast malt extract agar, YME; and oat agar, OA). Isolates were identified by 16S rRNA sequence analysis. A total of 198 isolates were obtained; 76 (series BVEZ) correspond to samples treated by dry heat and 122 strains (series BVEZMW) were isolated from samples irradiated with microwaves. A total of 19 dry heat and 25 microwave-irradiated isolates showed AA with inhibition zones (IZ, diameter in mm) ranging from 12.7 to 82.3 mm and from 11.4 to 55.4 mm, respectively. An increment for the AA was registered for isolates cultured on PDA and YME, with an IZ from 21.1 to 80.2 mm and 14.1 to 69.6 mm, respectively. A lower AA was detected when isolates were cultured on OA media (15.0 to 38.1 mm). Based on the 16S rRNA gene sequencing analysis, the actinobacteria belong to the Streptomyces (6) and Amycolatopsis (2) genera. Therefore, the study showed that microwave irradiation is a suitable method to increase the isolation of soil bacteria with AA against Xanthomonas sp. In addition, Streptomyces sp. BVEZ 50 was the isolate with the highest IZ (80.2 mm).
Collapse
Affiliation(s)
- Jesús Rafael Trinidad-Cruz
- Laboratorio de Fitopatología, Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico;
- Currently Independent Researcher, Zapopan 45019, Jalisco, Mexico
| | - Gabriel Rincón-Enríquez
- Laboratorio de Fitopatología, Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico;
| | - Zahaed Evangelista-Martínez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. Subsede Sureste, Tablaje Catastral 31264 Km 5.5 Carretera Sierra Papacal—Chuburná Puerto, Parque Científico y Tecnológico de Yucatán, Mérida 97302, Yucatán, Mexico;
| | - Luis López-Pérez
- Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr. Morelia Zinapécuaro, Tarímbaro 58880, Michoacán, Mexico;
| | - Evangelina Esmeralda Quiñones-Aguilar
- Laboratorio de Fitopatología, Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico;
| |
Collapse
|
2
|
Zhang C, Xu Q, Fu J, Wu L, Li Y, Lu Y, Shi Y, Sun H, Li X, Wang L, Hong B. Engineering Streptomyces sp. CPCC 204095 for the targeted high-level production of isatropolone A by elucidating its pathway-specific regulatory mechanism. Microb Cell Fact 2024; 23:113. [PMID: 38622698 PMCID: PMC11020959 DOI: 10.1186/s12934-024-02387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Isatropolone A and C, produced by Streptomyces sp. CPCC 204095, belong to an unusual class of non-benzenoid aromatic compounds and contain a rare seven-membered ring structure. Isatropolone A exhibits potent activity against Leishmania donovani, comparable to the only oral drug miltefosine. However, its variably low productivity represents a limitation for this lead compound in the future development of new anti-leishmaniasis drugs to meet unmet clinical needs. RESULTS Here we first elucidated the regulatory cascade of biosynthesis of isatropolones, which consists of two SARP family regulators, IsaF and IsaJ. Through a series of in vivo and in vitro experiments, IsaF was identified as a pathway-specific activator that orchestrates the transcription of the gene cluster essential for isatropolone biosynthesis. Interestingly, IsaJ was found to only upregulate the expression of the cytochrome P450 monooxygenase IsaS, which is crucial for the yield and proportion of isatropolone A and C. Through targeted gene deletions of isaJ or isaS, we effectively impeded the conversion of isatropolone A to C. Concurrently, the facilitation of isaF overexpression governed by selected promoters, prompted the comprehensive activation of the production of isatropolone A. Furthermore, meticulous optimization of the fermentation parameters was conducted. These strategies culminated in the attainment of an unprecedented maximum yield-980.8 mg/L of isatropolone A-achieved in small-scale solid-state fermentation utilizing the genetically modified strains, thereby establishing the highest reported titer to date. CONCLUSION In Streptomyces sp. CPCC 204095, the production of isatropolone A and C is modulated by the SARP regulators IsaF and IsaJ. IsaF serves as a master pathway-specific regulator for the production of isatropolones. IsaJ, on the other hand, only dictates the transcription of IsaS, the enzyme responsible for the conversion of isatropolone A and C. By engineering the expression of these pivotal genes, we have devised a strategy for genetic modification aimed at the selective and high-yield biosynthesis of isatropolone A. This study not only unveils the unique regulatory mechanisms governing isatropolone biosynthesis for the first time, but also establishes an essential engineering framework for the targeted high-level production of isatropolone A.
Collapse
Affiliation(s)
- Cong Zhang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianqian Xu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Fu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Linzhuan Wu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuan Lu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Lifei Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Fu J, Liu X, Zhang M, Liu J, Li S, Jiang B, Wu L. Di-Isatropolone C, a Spontaneous Isatropolone C Dimer Derivative with Autophagy Activity. Molecules 2024; 29:1477. [PMID: 38611756 PMCID: PMC11013608 DOI: 10.3390/molecules29071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Isatropolone C from Streptomyces sp. CPCC 204095 features a fused cyclopentadienone-tropolone-oxacyclohexadiene tricyclic moiety in its structure. Herein, we report an isatropolone C dimer derivative, di-isatropolone C, formed spontaneously from isatropolone C in methanol. Notably, the structure of di-isatropolone C resolved by NMR reveals a newly formed cyclopentane ring to associate the two isatropolone C monomers. The configurations of four chiral carbons, including a ketal one, in the cyclopentane ring are assigned using quantum NMR calculations and DP4+ probability. The plausible molecular mechanism for di-isatropolone C formation is proposed, in which complex dehydrogenative C-C bond coupling may have happened to connect the two isatropolone C monomers. Like isatropolone C, di-isatropolone C shows the biological activity of inducing autophagy in HepG2 cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingya Jiang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.F.); (X.L.); (M.Z.); (J.L.); (S.L.)
| | - Linzhuan Wu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.F.); (X.L.); (M.Z.); (J.L.); (S.L.)
| |
Collapse
|
4
|
Karagoz K, Dadasoglu F, Alaylar B, Kotan R. Evaluation of molecular typing methods for some scab-causing Streptomyces strains from Turkey. World J Microbiol Biotechnol 2024; 40:122. [PMID: 38441818 PMCID: PMC10914884 DOI: 10.1007/s11274-024-03914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
This study was conducted for identifying phylogenetic relationships between 15 scab-causing Streptomyces species including S. bottropensis, S. europaeiscabiei, S. scabiei, S. stelliscabiei and, other 11 Streptomyces sp. All of the strains were originally isolated from symptomatic potatoes in Erzurum Province, The Eastern Anatolia Region of Turkey. Some morphological and biochemical properties of the strains were defined in our former research. Then, 16 s rRNA regions of them were sequenced. After the sequence data assembly, phylogenetic analyzes were performed. The phylogenetic analyses revealed that the strains are involved in the same major group and, substantially similar to reference strains. Additionally, some subgroup formations were also recorded. Moreover, Repetitive element-based PCR (Rep-PCR), Enterobacterial repetitive intergenic consensus (ERIC-PCR), and BOX-PCR fingerprinting molecular typing methods were used for as molecular typing methods. According to our knowledge, this is the first report on phylogenetic relationships of scab-causing Streptomyces species from Turkey. However, the identification of most pathogenic strains remained at the species level.
Collapse
Affiliation(s)
- Kenan Karagoz
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, 04100, Agri, Turkey.
| | - Fatih Dadasoglu
- Agricultural Faculty, Department of Plant Protection, Ataturk University, 25240, Erzurum, Turkey
| | - Burak Alaylar
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, 04100, Agri, Turkey
| | - Recep Kotan
- Agricultural Faculty, Department of Plant Protection, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
5
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
6
|
Song L, Ping X, Mao Z, Zhao J, Yang Y, Li Y, Xie B, Ling J. Variation and stability of rhizosphere bacterial communities of Cucumis crops in association with root-knot nematodes infestation. FRONTIERS IN PLANT SCIENCE 2023; 14:1163271. [PMID: 37324672 PMCID: PMC10266268 DOI: 10.3389/fpls.2023.1163271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Introduction Root-knot nematodes (RKN) disease is a devastating disease in Cucumis crops production. Existing studies have shown that resistant and susceptible crops are enriched with different rhizosphere microorganisms, and microorganisms enriched in resistant crops can antagonize pathogenic bacteria. However, the characteristics of rhizosphere microbial communities of Cucumis crops after RKN infestation remain largely unknown. Methods In this study, we compared the changes in rhizosphere bacterial communities between highly RKN-resistant Cucumis metuliferus (cm3) and highly RKN-susceptible Cucumis sativus (cuc) after RKN infection through a pot experiment. Results The results showed that the strongest response of rhizosphere bacterial communities of Cucumis crops to RKN infestation occurred during early growth, as evidenced by changes in species diversity and community composition. However, the more stable structure of the rhizosphere bacterial community in cm3 was reflected in less changes in species diversity and community composition after RKN infestation, forming a more complex and positively co-occurrence network than cuc. Moreover, we observed that both cm3 and cuc recruited bacteria after RKN infestation, but the bacteria enriched in cm3 were more abundant including beneficial bacteria Acidobacteria, Nocardioidaceae and Sphingomonadales. In addition, the cuc was enriched with beneficial bacteria Actinobacteria, Bacilli and Cyanobacteria. We also found that more antagonistic bacteria than cuc were screened in cm3 after RKN infestation and most of them were Pseudomonas (Proteobacteria, Pseudomonadaceae), and Proteobacteria were also enriched in cm3 after RKN infestation. We hypothesized that the cooperation between Pseudomonas and the beneficial bacteria in cm3 could inhibit the infestation of RKN. Discussion Thus, our results provide valuable insights into the role of rhizosphere bacterial communities on RKN diseases of Cucumis crops, and further studies are needed to clarify the bacterial communities that suppress RKN in Cucumis crops rhizosphere.
Collapse
Affiliation(s)
- Liqun Song
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Microbial Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Chaoyang, China
| | - Xingxing Ping
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ling
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Lahlali R, Gachara G, Özer G, Touseef H. Editorial: Perspective challenges for applied research in potato pathogens: From molecular biology to bioinformatics. Front Microbiol 2023; 14:1140107. [PMID: 36925464 PMCID: PMC10011710 DOI: 10.3389/fmicb.2023.1140107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Rachid Lahlali
- Ecole Nationale d'Agriculture de Meknès, Meknès, Morocco
| | - Grace Gachara
- Department of Agriculture, Fertilization and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Göksel Özer
- Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Hussain Touseef
- Matimate Agromart Private Ltd. (Sevama AgriClinic Laboratory), Bhavnagar, India
| |
Collapse
|
8
|
Bora SS, Hazarika DJ, Churaman A, Naorem RS, Dasgupta A, Chakrabarty R, Kalita H, Barooah M. Common scab disease-induced changes in geocaulosphere microbiome assemblages and functional processes in landrace potato (Solanum tuberosum var. Rongpuria) of Assam, India. Arch Microbiol 2022; 205:44. [PMID: 36576579 DOI: 10.1007/s00203-022-03380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022]
Abstract
Common scab (CS) caused by pathogenic Streptomyces spp. plays a decisive role in the qualitative and quantitative production of potatoes worldwide. Although the CS pathogen is present in Assam's soil, disease signs and symptoms are less obvious in the landrace Rongpuria potatoes that indicate an interesting interaction between the plant and the geocaulosphere microbial population. Toward this, a comparative metagenomics study was performed to elucidate the geocaulosphere microbiome assemblages and functions of low CS-severe (LSG) and moderately severe (MSG) potato plants. Alpha diversity indices showed that CS occurrence modulated microbiome composition and decreased overall microbial abundances. Functional analysis involving cluster of orthologous groups (COG) too confirmed reduced microbial metabolism under disease incidence. The top-three most dominant genera were Pseudomonas (relative abundance: 2.79% in LSG; 12.31% in MSG), Streptomyces (2.55% in LSG; 5.28% in MSG), and Pantoea (2.30% in LSG; 3.51% in MSG). As shown by the high Pielou's J evenness index, the potato geocaulosphere core microbiome was adaptive and resilient to CS infection. The plant growth-promoting traits and potential antagonistic activity of major taxa (Pseudomonads, non-pathogenic Streptomyces spp., and others) against the CS pathogen, i.e., Streptomyces scabiei, point toward selective microbial recruitment and colonization strategy by the plants to its own advantage. KEGG Orthology analysis showed that the CS infection resulted in high abundances of ATP-binding cassette transporters and a two-component system, ubiquitous to the transportation and regulation of metabolites. As compared to the LSG metagenome, the MSG counterpart had a higher representation of important PGPTs related to 1-aminocyclopropane-1-carboxylate deaminase, IAA production, betaine utilization, and siderophore production.
Collapse
Affiliation(s)
- Sudipta Sankar Bora
- DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat, Assam, India
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Amrita Churaman
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Romen S Naorem
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Abhisek Dasgupta
- DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat, Assam, India
| | - Ranjana Chakrabarty
- Regional Agricultural Research Station, Assam Agricultural University, Shillongani, Assam, India
| | - Hemen Kalita
- Regional Agricultural Research Station, Assam Agricultural University, Shillongani, Assam, India
| | - Madhumita Barooah
- DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat, Assam, India.
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.
| |
Collapse
|
9
|
Li L, Zhang M, Li S, Jiang B, Zhang J, Yu L, Liu H, Wu L. Isatropolone/isarubrolone C m from Streptomyces with biological activity of inducing incomplete autophagy. J Antibiot (Tokyo) 2022; 75:702-708. [PMID: 36224376 DOI: 10.1038/s41429-022-00575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Isatropolones/isarubrolones are Streptomyces secondary metabolites featuring a tropolone ring in the pentacyclic scaffolds of these molecules. They are able to induce complete autophagy in human HepG2 cells. Here, methyl isatropolones (1-2) and isarubrolone (3) are identified from Streptomyces CPCC 204095. They all have a methyl tropolone ring in the pentacyclic scaffold of these molecules resolved by MS and NMR spectra. Biological activity assay indicates that isatropolone Cm (1) and isarubrolone Cm (3) induce incomplete autophagy in human HepG2 cells.
Collapse
Affiliation(s)
- Linli Li
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
- Department of Clinical Pharmacy, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, People's Republic of China
| | - Miaoqing Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
| | - Shufen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China.
| | - Bingya Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
| | - Jingpu Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
| | - Liyan Yu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
| | - Hongyu Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
| | - Linzhuan Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Riaz M, Akhtar N, Msimbira LA, Antar M, Ashraf S, Khan SN, Smith DL. Neocosmospora rubicola, a stem rot disease in potato: Characterization, distribution and management. Front Microbiol 2022; 13:953097. [PMID: 36033873 PMCID: PMC9403868 DOI: 10.3389/fmicb.2022.953097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Potato (Solanum tuberosum L.) is one of the most important crops in maintaining global food security. Plant stand and yield are affected by production technology, climate, soil type, and biotic factors such as insects and diseases. Numerous fungal diseases including Neocosmospora rubicola, causing stem rot, are known to have negative effects on potato growth and yield quality. The pathogen is known to stunt growth and cause leaf yellowing with grayish-black stems. The infectivity of N. rubicola across a number of crops indicates the need to search for appropriate management approaches. Synthetic pesticides application is a major method to mitigate almost all potato diseases at this time. However, these pesticides significantly contribute to environmental damage and continuous use leads to pesticide resistance by pathogens. Consumers interest in organic products have influenced agronomists to shift toward the use of biologicals in controlling most pathogens, including N. rubicola. This review is an initial effort to carefully examine current and alternative approaches to control N. rubicola that are both environmentally safe and ecologically sound. Therefore, this review aims to draw attention to the N. rubicola distribution and symptomatology, and sustainable management strategies for potato stem rot disease. Applications of plant growth promoting bacteria (PGPB) as bioformulations with synthetic fertilizers have the potential to increase the tuber yield in both healthy and N. rubicola infested soils. Phosphorus and nitrogen applications along with the PGPB can improve plants uptake efficiency and reduce infestation of pathogen leading to increased yield. Therefore, to control N. rubicola infestation, with maximum tuber yield benefits, a pre-application of the biofertilizer is shown as a better option, based on the most recent studies. With the current limited information on the disease, precise screening of the available resistant potato cultivars, developing molecular markers for resistance genes against N. rubicola will assist to reduce spread and virulence of the pathogen.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Naureen Akhtar
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Mohammed Antar
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Shoaib Ashraf
- Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Salik Nawaz Khan
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
| | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Zhao P, Liu L, Cao J, Wang Z, Zhao Y, Zhong N. Transcriptome Analysis of Tryptophan-Induced Resistance against Potato Common Scab. Int J Mol Sci 2022; 23:ijms23158420. [PMID: 35955553 PMCID: PMC9369096 DOI: 10.3390/ijms23158420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Potato common scab (CS) is a worldwide soil-borne disease that severely reduces tuber quality and market value. We observed that foliar application of tryptophan (Trp) could induce resistance against CS. However, the mechanism of Trp as an inducer to trigger host immune responses is still unclear. To facilitate dissecting the molecular mechanisms, the transcriptome of foliar application of Trp and water (control, C) was compared under Streptomyces scabies (S) inoculation and uninoculation. Results showed that 4867 differentially expressed genes (DEGs) were identified under S. scabies uninoculation (C-vs-Trp) and 2069 DEGs were identified under S. scabies inoculation (S-vs-S+Trp). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that Trp induced resistance related to the metabolic process, response to stimulus, and biological regulation. As phytohormone metabolic pathways related to inducing resistance, the expression patterns of candidate genes involved in salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) pathways were analyzed using qRT-PCR. Their expression patterns showed that the systemic acquired resistance (SAR) and induced systemic resistance (ISR) pathways could be co-induced by Trp under S. scabies uninoculation. However, the SAR pathway was induced by Trp under S. scabies inoculation. This study will provide insights into Trp-induced resistance mechanisms of potato for controlling CS, and extend the application methods of Trp as a plant resistance inducer in a way that is cheap, safe, and environmentally friendly.
Collapse
Affiliation(s)
- Pan Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (J.C.); (Z.W.); (Y.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
- The Enterprise Key Laboratory of Advanced Technology for Potato Fertilizer and Pesticide, Hulunbuir 021000, China
- Correspondence: (P.Z.); (N.Z.)
| | - Lu Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (J.C.); (Z.W.); (Y.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Cao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (J.C.); (Z.W.); (Y.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiqin Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (J.C.); (Z.W.); (Y.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonglong Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (J.C.); (Z.W.); (Y.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (J.C.); (Z.W.); (Y.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
- The Enterprise Key Laboratory of Advanced Technology for Potato Fertilizer and Pesticide, Hulunbuir 021000, China
- Correspondence: (P.Z.); (N.Z.)
| |
Collapse
|
12
|
Olanrewaju OS, Babalola OO. Plant growth-promoting rhizobacteria for orphan legume production: Focus on yield and disease resistance in Bambara groundnut. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.922156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Orphan legumes are now experiencing growing demand due to the constraints on available major food crops. However, due to focus on major food crops, little research has been conducted on orphan legumes compared to major food crops, especially in microbiome application to improve growth and yield. Recent developments have demonstrated the enormous potential of beneficial microbes in growth promotion and resistance to stress and diseases. Hence, the focus of this perspective is to examine the potential of plant growth promoting rhizobacteria (PGPR) to improve Bambara groundnut yield and quality. Further insights into the potential use of PGPR as a biological control agent in the crop are discussed. Finally, three PGPR genera commonly associated with plant growth and disease resistance (Bacillus, Pseudomonas, and Streptomyces) were highlighted as case studies for the growth promotion and disease control in BGN production.
Collapse
|
13
|
Connolly JA, Harcombe WR, Smanski MJ, Kinkel LL, Takano E, Breitling R. Harnessing intercellular signals to engineer the soil microbiome. Nat Prod Rep 2021; 39:311-324. [PMID: 34850800 DOI: 10.1039/d1np00034a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: Focus on 2015 to 2020Plant and soil microbiomes consist of diverse communities of organisms from across kingdoms and can profoundly affect plant growth and health. Natural product-based intercellular signals govern important interactions between microbiome members that ultimately regulate their beneficial or harmful impacts on the plant. Exploiting these evolved signalling circuits to engineer microbiomes towards beneficial interactions with crops is an attractive goal. There are few reports thus far of engineering the intercellular signalling of microbiomes, but this article argues that it represents a tremendous opportunity for advancing the field of microbiome engineering. This could be achieved through the selection of synergistic consortia in combination with genetic engineering of signal pathways to realise an optimised microbiome.
Collapse
Affiliation(s)
- Jack A Connolly
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Faculty of Science and Engineering, School of Natural Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| | - William R Harcombe
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN55108, USA.,Department of Evolution, and Behaviour, University of Minnesota, Twin-Cities Saint Paul, MN55108, USA
| | - Michael J Smanski
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN55108, USA.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin-Cities, Saint Paul, MN55108, USA
| | - Linda L Kinkel
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN55108, USA.,Department of Plant Pathology, University of Minnesota, Twin-Cities, Saint Paul, MN 55108, USA
| | - Eriko Takano
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Faculty of Science and Engineering, School of Natural Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Faculty of Science and Engineering, School of Natural Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
14
|
Pacheco-Moreno A, Stefanato FL, Ford JJ, Trippel C, Uszkoreit S, Ferrafiat L, Grenga L, Dickens R, Kelly N, Kingdon AD, Ambrosetti L, Nepogodiev SA, Findlay KC, Cheema J, Trick M, Chandra G, Tomalin G, Malone JG, Truman AW. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021; 10:71900. [PMID: 34792466 PMCID: PMC8719888 DOI: 10.7554/elife.71900] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs. Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques – for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Christine Trippel
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Simon Uszkoreit
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Laura Ferrafiat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lucia Grenga
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Ruth Dickens
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Nathan Kelly
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alexander Dh Kingdon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Liana Ambrosetti
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jitender Cheema
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
15
|
Shi W, Su G, Li M, Wang B, Lin R, Yang Y, Wei T, Zhou B, Gao Z. Distribution of Bacterial Endophytes in the Non-lesion Tissues of Potato and Their Response to Potato Common Scab. Front Microbiol 2021; 12:616013. [PMID: 33633704 PMCID: PMC7900429 DOI: 10.3389/fmicb.2021.616013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/13/2021] [Indexed: 11/24/2022] Open
Abstract
The response of plant endophytes to disease within infected tissues has been well demonstrated, but the corresponding response of endophytes in non-lesion tissues remains unclear. Here, we studied the composition and distribution of bacterial endophytes in potato roots (RE), stems (SE), and tubers (TE), and explored the response of endophytes in non-lesion tissues to potato common scab (PCS), which is a soil-borne disease caused by pathogenic Streptomyces and results in serious losses to the global economy every year. Via high-throughput sequencing, it was seen that the composition of endophytes in roots, stems, and tubers had significant differences (P < 0.05) and the distribution of the bacterial communities illustrated a gradient from soil to root to tuber/stem. PCS significantly reduced bacterial endophytes α-diversity indexes, including ACE and the number of observed operational taxonomic units (OTUs), of RE without significantly reducing the indexes of SE and TE. No significant effect on the composition of endophytes were caused by PCS in roots, tubers, or stems between high PCS severity (H) and low PCS severity (L) infections at the community level, but PCS did have a substantial impact on the relative abundance of several specific endophytes. Rhizobium and Sphingopyxis were significantly enriched in root endophytes with low PCS severity (REL); Delftia and Ochrobactrum were significantly enriched in stem endophytes with low PCS severity (SEL); Pedobacter, Delftia, and Asticcacaulis were significantly enriched in tuber endophytes with high PCS severity (TEH). OTU62, a potential PCS pathogen in this study, was capable of colonizing potato tubers, roots, and stems with few or no symptoms present. Co-occurrence networks showed that the number of correlations to OTU62 was higher than average in these three tissue types, suggesting the importance of OTU62 in endophytic communities. This study clarified the distribution and composition of potato endophytes in tubers, roots, and stems, and demonstrated the response of endophytes in non-lesion tissues to PCS.
Collapse
Affiliation(s)
- Wencong Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Gaoya Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Mingcong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Bing Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China
| | - Rongshan Lin
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China
| | - Yutian Yang
- Agriculture Research Institute of Zaozhuang, Zaozhuang, China
| | - Tao Wei
- Agriculture Research Institute of Zaozhuang, Zaozhuang, China
| | - Bo Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China
| | - Zheng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China.,College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
16
|
Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review. SUSTAINABILITY 2020. [DOI: 10.3390/su13010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review pays attention to the newest insights on the soil microbiome in plant disease-suppressive soil (DSS) for sustainable plant health management from the perspective of a circular economy that provides beneficial microbiota by recycling agro-wastes into the soil. In order to increase suppression of soil-borne plant pathogens, the main goal of this paper is to critically discuss and compare the potential use of reshaped soil microbiomes by assembling different agricultural practices such as crop selection; land use and conservative agriculture; crop rotation, diversification, intercropping and cover cropping; compost and chitosan application; and soil pre-fumigation combined with organic amendments and bio-organic fertilizers. This review is seen mostly as a comprehensive understanding of the main findings regarding DSS, starting from the oldest concepts to the newest challenges, based on the assumption that sustainability for soil quality and plant health is increasingly viable and supported by microbiome-assisted strategies based on the next-generation sequencing (NGS) methods that characterize in depth the soil bacterial and fungal communities. This approach, together with the virtuous reuse of agro-wastes to produce in situ green composts and organic bio-fertilizers, is the best way to design new sustainable cropping systems in a circular economy system. The current knowledge on soil-borne pathogens and soil microbiota is summarized. How microbiota determine soil suppression and what NGS strategies are available to understand soil microbiomes in DSS are presented. Disturbance of soil microbiota based on combined agricultural practices is deeply considered. Sustainable soil microbiome management by recycling in situ agro-wastes is presented. Afterwards, how the resulting new insights can drive the progress in sustainable microbiome-based disease management is discussed.
Collapse
|
17
|
Fan H, Yao M, Wang H, Zhao D, Zhu X, Wang Y, Liu X, Duan Y, Chen L. Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita. BMC Microbiol 2020; 20:299. [PMID: 33008296 PMCID: PMC7531111 DOI: 10.1186/s12866-020-01984-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background Root-knot nematode is one of the most significant diseases of vegetable crops in the world. Biological control with microbial antagonists has been emerged as a promising and eco-friendly treatment to control pathogens. The aim of this study was to screen and identify novel biocontrol agents against root-knot nematode, Meloidogyne incognita. Results A total of 890 fungal isolates were obtained from rhizosphere soil of different crops and screened by nematicidal activity assays. Snef1910 strain showed high virulence against second stage juveniles (J2s) of M. incognita and identified as Trichoderma citrinoviride by morphology analysis and biomolecular assay. Furthermore, T. citrinoviride Snef1910 significantly inhibited egg hatching with the hatching inhibition percentages of 90.27, 77.50, and 67.06% at 48, 72, and 96 h after the treatment, respectively. The results of pot experiment showed that the metabolites of T. citrinoviride Snef1910 significantly decreased the number of root galls, J2s, and nematode egg masses and J2s population density in soil and significantly promoted the growth of tomato plants. In the field experiment, the biocontrol application showed that the control efficacy of T. citrinoviride Snef1910 against root-knot nematode was more than 50%. Meanwhile, T. citrinoviride Snef1910 increased the tomato plant biomass. Conclusions T. citrinoviride strain Snef1910 could be used as a potential biological control agent against root-knot nematode, M. incognita.
Collapse
Affiliation(s)
- Haiyan Fan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Meiling Yao
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Haiming Wang
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Di Zhao
- Analytical and Testing Center, Shenyang Agricultural University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Wang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Duan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
18
|
Ismail S, Jiang B, Nasimi Z, Inam-ul-Haq M, Yamamoto N, Danso Ofori A, Khan N, Arshad M, Abbas K, Zheng A. Investigation of Streptomyces scabies Causing Potato Scab by Various Detection Techniques, Its Pathogenicity and Determination of Host-Disease Resistance in Potato Germplasm. Pathogens 2020; 9:pathogens9090760. [PMID: 32957549 PMCID: PMC7559370 DOI: 10.3390/pathogens9090760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022] Open
Abstract
Streptomyces scabies is a Gram-positive bacterial pathogen that causes common scab disease to several crops, particularly in the potato. It is a soil borne pathogen, a very devastating scab pathogen and difficult to manage in the field. Streptomyces has several species that cause common scab such as S. scabiei, S. acidiscabies, S. europaeiscabiei, S. luridiscabiei, S. niveiscabiei, S. puniciscabiei, S. reticuliscabiei, S. stelliscabiei, S. turgidiscabies, S. ipomoeae. Common scab disease harmfully affects potato economic and market value due to the presence of black spots on the tuber. Owing to its genetic diversity and pathogenicity, the determination of pathogen presence in potato fields is still challenging. In this study, S. scabies genetic diversity was measured by surveying five potato-growing areas of Pakistan during the growing season 2019. A total of 50 Streptomyces isolates, including S. scabies, S. acidiscabies, S. griseoflavus were isolated and identified based on morphologic, biochemical and molecular analysis. Virulent confirmation assays confirmed ten virulent strains of Streptomyces spp. On the potato cultivars Cardinal and Santee. Among the Streptomyces species, S. scabies showed the highest scab index, followed by S. acidiscabies and S. griseoflavus by exhibiting the scab-like lesions on potato tubers. Ten potato cultivars were screened against these virulent isolates of Streptomyces. The Faisalabad white variety showed the highest scab index followed By Cardinal, Tourag, Kuroda, Santee, Lady Rosetta, Asterix, Diamant, Faisalabad red and Sadaf. Moreover, genetic diversity and pathogenicity of Streptomyces spp. on potato tubers were also likely diverse in different geographical regions and also potato cultivars. This study represents a contribution to understanding the local interaction between potatoes and Streptomyces spp. in Pakistan. It will aid in supporting a solution for the management of this pathogen around the world.
Collapse
Affiliation(s)
- Sohaib Ismail
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China; (S.I.); (Z.N.); (N.Y.); (A.D.O.)
| | - Bo Jiang
- College of Lifescience and Technology, Yangtze Normal University, Chongqing 408100, China;
| | - Zohreh Nasimi
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China; (S.I.); (Z.N.); (N.Y.); (A.D.O.)
| | - M. Inam-ul-Haq
- Department of Plant Pathology, PMAS-Arid Agriculture University, Rawalpindi 44000, Pakistan;
| | - Naoki Yamamoto
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China; (S.I.); (Z.N.); (N.Y.); (A.D.O.)
| | - Andrews Danso Ofori
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China; (S.I.); (Z.N.); (N.Y.); (A.D.O.)
| | - Nawab Khan
- Department of Agricultural Economics, Sichuan Agricultural University, Chengdu 611130, China;
| | - Muhammad Arshad
- Department of Microbiology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Kumail Abbas
- Institute of Horticulture, Sichuan Agricultural University, Chengdu 611130, China;
| | - Aiping Zheng
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China; (S.I.); (Z.N.); (N.Y.); (A.D.O.)
- Correspondence:
| |
Collapse
|
19
|
Ho LK, Daniel-Ivad M, Jeedigunta SP, Li J, Iliadi KG, Boulianne GL, Hurd TR, Smibert CA, Nodwell JR. Chemical entrapment and killing of insects by bacteria. Nat Commun 2020; 11:4608. [PMID: 32929085 PMCID: PMC7490686 DOI: 10.1038/s41467-020-18462-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Actinobacteria produce antibacterial and antifungal specialized metabolites. Many insects harbour actinobacteria on their bodies or in their nests and use these metabolites for protection. However, some actinobacteria produce metabolites that are toxic to insects and the evolutionary relevance of this toxicity is unknown. Here we explore chemical interactions between streptomycetes and the fruit fly Drosophila melanogaster. We find that many streptomycetes produce specialized metabolites that have potent larvicidal effects against the fly; larvae that ingest spores of these species die. The mechanism of toxicity is specific to the bacterium's chemical arsenal: cosmomycin D producing bacteria induce a cell death-like response in the larval digestive tract; avermectin producing bacteria induce paralysis. Furthermore, low concentrations of volatile terpenes like 2-methylisoborneol that are produced by streptomycetes attract fruit flies such that they preferentially deposit their eggs on contaminated food sources. The resulting larvae are killed during growth and development. The phenomenon of volatile-mediated attraction and specialized metabolite toxicity suggests that some streptomycetes pose an evolutionary risk to insects in nature.
Collapse
Affiliation(s)
- Louis K Ho
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Martin Daniel-Ivad
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Jing Li
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Konstantin G Iliadi
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Gabrielle L Boulianne
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
- The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
20
|
Zhang XY, Li C, Hao JJ, Li YC, Li DZ, Zhang DM, Xing X, Liang Y. A Novel Streptomyces sp. Strain PBSH9 for Controlling Potato Common Scab Caused by Streptomyces galilaeus. PLANT DISEASE 2020; 104:1986-1993. [PMID: 32441579 DOI: 10.1094/pdis-07-19-1469-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Potato common scab is an important soilborne disease worldwide that can significantly reduce the quality and economic values of potato. The disease is caused by multiple species of Streptomyces, which are not well controlled due to lack of effective strategies. Streptomyces galilaeus has been recently identified as a dominant species causing potato common scab in Inner Mongolia, China. This study was focused on screening and characterizing antagonists for biological control against pathogenic S. galilaeus. Bacterial strain PBSH9 was isolated from a potato tuber. PBSH9 was identified as a Streptomyces sp. on the basis of morphological, physiological, and biochemical characteristics, as well as DNA sequence analysis. PBSH9 inhibited S. galilaeus with a diameter of inhibitory zone of 19.8 mm on agar plates. The extracellular filtrate of PBSH9 also inhibited S. galilaeus growth with a diameter of inhibition zone of 10.0 mm. Furthermore, PBSH9 promoted potato sprouting and emergence. Disease control was up to 81.88% in greenhouse trials, and from 47.64 to 73.97% in 3-year field trials. Among the tested inoculation methods, seed treatment was more effective than soil drenching for PBSH9 application. PBSH9 not only effectively controlled potato common scab but also increased potato growth. Thus, it can be a potential candidate for biocontrol agent.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Chi Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Jian-Jun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, U.S.A
| | - Yu-Chen Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - De-Zhou Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
- Development Planning Office, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dong-Mei Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Xing Xing
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Yan Liang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| |
Collapse
|
21
|
Draft Genome Sequence of Pseudomonas chlororaphis subsp. aurantiaca ARS-38, a Bacterial Strain with Plant Growth Promotion Potential, Isolated from the Rhizosphere of Cotton in Pakistan. Microbiol Resour Announc 2020; 9:9/3/e01398-19. [PMID: 31948966 PMCID: PMC6965584 DOI: 10.1128/mra.01398-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Strain ARS-38 is a potential plant growth-promoting rhizobacterium that exhibits antifungal properties. Here, we report a 6.6-Mb draft genome, which gives insight into the complete secondary metabolite production capacity and reveals genes putatively responsible for its antifungal activity, as well as genes which contribute to plant growth promotion. Strain ARS-38 is a potential plant growth-promoting rhizobacterium that exhibits antifungal properties. Here, we report a 6.6-Mb draft genome, which gives insight into the complete secondary metabolite production capacity and reveals genes putatively responsible for its antifungal activity, as well as genes which contribute to plant growth promotion.
Collapse
|
22
|
Bao S, Zhang Z, Lian Q, Sun Q, Zhang R. Evolution and expression of genes encoding TCP transcription factors in Solanum tuberosum reveal the involvement of StTCP23 in plant defence. BMC Genet 2019; 20:91. [PMID: 31801457 PMCID: PMC6892148 DOI: 10.1186/s12863-019-0793-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022] Open
Abstract
Background The plant-specific Teosinte branched1/Cycloidea/Proliferating cell factor (TCP) family of transcription factors is involved in the regulation of cell growth and proliferation, performing diverse functions in plant growth and development. In addition, TCP transcription factors have recently been shown to be targets of pathogenic effectors and are likely to play a vital role in plant immunity. No comprehensive analysis of the TCP family members in potato (Solanum tuberosum L.) has been undertaken, however, and whether their functions are conserved in potato remains unknown. Results To assess TCP gene evolution in potato, we identified TCP-like genes in several publicly available databases. A total of 23 non-redundant TCP transcription factor-encoding genes were identified in the potato genome and subsequently subjected to a systematic analysis that included determination of their phylogenetic relationships, gene structures and expression profiles in different potato tissues under basal conditions and after hormone treatments. These assays also confirmed the function of the class I TCP StTCP23 in the regulation of plant growth and defence. Conclusions This is the first genome-wide study including a systematic analysis of the StTCP gene family in potato. Identification of the possible functions of StTCPs in potato growth and defence provides valuable information for our understanding of the classification and functions of the TCP genes in potato.
Collapse
Affiliation(s)
- Sarina Bao
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Zhenxin Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Qun Lian
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Qinghua Sun
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
23
|
Identification of Novel Endophytic Yeast Strains from Tangerine Peel. Curr Microbiol 2019; 76:1066-1072. [DOI: 10.1007/s00284-019-01721-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/19/2019] [Indexed: 01/14/2023]
|
24
|
Sarwar A, Latif Z, Zhang S, Hao J, Bechthold A. A Potential Biocontrol Agent Streptomyces violaceusniger AC12AB for Managing Potato Common Scab. Front Microbiol 2019; 10:202. [PMID: 30800116 PMCID: PMC6375851 DOI: 10.3389/fmicb.2019.00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Potato common scab (PCS) is an economically important disease worldwide. In this study we demonstrated the possible role of Streptomyces violaceusniger AC12AB in controlling PCS. Isolates of Streptomyces scabies were obtained from CS infected tubers collected from Maine United States, which were confirmed by morphological and molecular analysis including 16S rRNA sequencing and RFLP analysis of amplified 16S-23S ITS. Pathogenicity assays related genes including txtAB, nec1, and tomA were also identified in all S. scabies strains through PCR reaction. An antagonistic bacterial strain was isolated from soil in Punjab and identified as S. violaceusniger AC12AB based on 16S rRNA sequencing analysis. Methanolic extract of S. violaceusniger AC12AB contained azalomycin RS-22A which was confirmed by 1H and 13C-NMR, 1H/1H-COSY, HMBC and HMQC techniques. S. violaceusniger AC12AB exhibited plant growth promotion attributes including Indole-3-acetic acid production with 17 μgmL-1 titers, siderophores production, nitrogen fixation and phosphates solubilization potential. When tubers were inoculated with S. violaceusniger AC12AB, significant (P < 0.05) PCS disease reduction up to 90% was observed in greenhouse and field trials, respectively. Likewise, S. violaceusniger AC12AB significantly (P < 0.05) increased potato crop up to 26.8% in field trial. Therefore, plant growth promoting S. violaceusniger AC12AB could provide a dual benefit by decreasing PCS disease severity and increasing potato yield as an effective and inexpensive alternative strategy to manage this disease.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Zakia Latif
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|