1
|
Demisie S, Oh DC, Wolday D, Rinke de Wit TF, Abera A, Tasew G, Shenkutie AM, Girma S, Tafess K. Diversity of culturable bacterial isolates and their potential as antimicrobial against human pathogens from Afar region, Ethiopia. Microbiol Spectr 2024; 12:e0181024. [PMID: 39365108 DOI: 10.1128/spectrum.01810-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024] Open
Abstract
Antimicrobial resistance is a growing global concern exacerbated by the scarcity of new medications and resistance to current antibiotics. Microbes from unexplored habitats are promising sources of natural products to combat this challenge. This study aimed to isolate bacteria producing secondary metabolites and assess their antimicrobial efficacy against human pathogens. Soil and liquid samples were collected from Afar region, Ethiopia. Bacterial isolates were obtained using standard serial dilution techniques. Antimicrobial activity was evaluated using agar plug and well diffusion methods. matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-TOF MS) and whole-genome sequencing (WGS) were conducted for the isolate exhibiting the highest antimicrobial activity. Secondary metabolites were extracted and analyzed using gas chromatography-mass spectra (GC-MS). In this study, 301 bacteria isolates were identified, of which 68 (22.6%) demonstrated antagonistic activity against at least one reference pathogen. Whole-genome sequencing revealed that Sl00103 belongs to the genus Bacillus, designated as Bacillus sp. Sl00103. The extract of Sl00103 showed zones of inhibition ranging between 17.17 ± 0.43 and 26.2 ± 0.4 mm against bacterial pathogens and 19.5 ± 0.44 to 21.0 ± 1.01 mm against Candida albicans. GC-MS analysis of ethyl acetate and n-hexane extracts identified major compounds including (R,R)-butane-2,3-diol; 3-isobutylhexahydropyrrolo[1,2a] pyrazine-1,4-dione; cyclo(L-prolyl-L-valine); and tetradecanoic acid, 12-methyl-, methyl ester; hexadecanoic acid, methyl ester among other. In conclusion, this study isolated several promising bacterial strains from the Afar region in Ethiopia, with strain Sl00103 (Bacillus sp. Sl00103) demonstrating notable antimicrobial and antioxidant activities and warranting further studies. IMPORTANCE Antimicrobial resistance (AMR) is an escalating global health threat affecting humans, animals, and the environment, underscoring the urgent need for alternative pathogen control methods. Natural products, particularly secondary metabolites from bacteria, continue to be a vital source of antibiotics. However, microbial habitats and metabolites in Africa remain largely unexplored. In this study, we isolated and screened bacteria from Ethiopia's Afar region, characterized by extreme conditions like high temperatures, volcanic activity, high salinity, and hot springs to identify potential bioactive compounds. We discovered diverse bacterial isolates with antimicrobial activity against various pathogens, including strain Sl00103 (Bacillus sp. Sl00103), which demonstrated significant antimicrobial and antioxidant activities. GC-MS analysis identified several antimicrobial compounds, highlighting strain Sl00103 as a promising source of secondary metabolites with potential pharmaceutical applications and warranting further investigation.
Collapse
Affiliation(s)
- Sisay Demisie
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Dawit Wolday
- Depatment of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Tobias F Rinke de Wit
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Adugna Abera
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Geremew Tasew
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Abebe Mekuria Shenkutie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sisay Girma
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ketema Tafess
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Institute of Pharmaceutical Sciences, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
2
|
Elsayed SS, van der Heul HU, Xiao X, Nuutila A, Baars LR, Wu C, Metsä-Ketelä M, van Wezel GP. Unravelling key enzymatic steps in C-ring cleavage during angucycline biosynthesis. Commun Chem 2023; 6:281. [PMID: 38110491 PMCID: PMC10728087 DOI: 10.1038/s42004-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Angucyclines are type II polyketide natural products, often characterized by unusual structural rearrangements through B- or C-ring cleavage of their tetracyclic backbone. While the enzymes involved in B-ring cleavage have been extensively studied, little is known of the enzymes leading to C-ring cleavage. Here, we unravel the function of the oxygenases involved in the biosynthesis of lugdunomycin, a highly rearranged C-ring cleaved angucycline derivative. Targeted deletion of the oxygenase genes, in combination with molecular networking and structural elucidation, showed that LugOI is essential for C12 oxidation and maintaining a keto group at C6 that is reduced by LugOII, resulting in a key intermediate towards C-ring cleavage. An epoxide group is then inserted by LugOIII, and stabilized by the novel enzyme LugOV for the subsequent cleavage. Thus, for the first time we describe the oxidative enzymatic steps that form the basis for a wide range of rearranged angucycline natural products.
Collapse
Affiliation(s)
- Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| | - Helga U van der Heul
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Aleksi Nuutila
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Laura R Baars
- Department of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237, Qingdao, P.R. China
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
3
|
MinION Whole-Genome Sequencing in Resource-Limited Settings: Challenges and Opportunities. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 9:52-59. [DOI: 10.1007/s40588-022-00183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Abstract
Purpose of Review
The introduction of MinION whole-genome sequencing technology greatly increased and simplified complete genome sequencing in various fields of science across the globe. Sequences have been generated from complex organisms to microorganisms and are stored in genome databases that are readily accessible by researchers. Various new software for genome analysis, along with upgrades to older software packages, are being generated. New protocols are also being validated that enable WGS technology to be rapidly and increasingly used for sequencing in field settings.
Recent Findings
MinION WGS technology has been implemented in developed countries due to its advantages: portability, real-time analysis, and lower cost compared to other sequencing technologies. While these same advantages are critical in developing countries, MinION WGS technology is still under-utilized in resource-limited settings.
Summary
In this review, we look at the applications, advantages, challenges, and opportunities of using MinION WGS in resource-limited settings.
Collapse
|
4
|
Shahid M, Singh BN, Verma S, Choudhary P, Das S, Chakdar H, Murugan K, Goswami SK, Saxena AK. Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi. Braz J Microbiol 2021; 52:1687-1699. [PMID: 34591293 PMCID: PMC8578481 DOI: 10.1007/s42770-021-00625-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022] Open
Abstract
Actinomycetes due to their unique repertoire of antimicrobial secondary metabolites can be an eco-friendly and sustainable alternative to agrochemicals to control plant pathogens. In the present study, antifungal activity of twenty different actinomycetes was evaluated via dual culture plate assay against six different phytopathogens, viz., Alternaria alternata, Aspergillus flavus, Fusarium oxysporum f. sp. lycopersici, Sarocladium oryzae, Sclerotinia sclerotiorum, and Rhizoctonia solani. Two potential isolates, Streptomyces amritsarensis V31 and Kribella karoonensis MSCA185 showing high antifungal activity against all six fungal pathogens, were further evaluated after extraction of bioactive metabolites in different solvents. Metabolite extracted from S. amritsarensis V31 in different solvents inhibited Rhizoctonia solani (7.5-65%), Alternaria alternata (5.5-52.7%), Aspergillus flavus (8-30.7%), Fusarium oxysporum f. sp. lycopersici (25-44%), Sarocladium oryzae (11-55.5%), and Sclerotinia sclerotiorum (29.7-40.5%); 1000 D diluted methanolic extract of S. amritsarensis V31 showed growth inhibition against R. solani (23.3%), A. flavus (7.7%), F. oxysporum (22.2%), S. oryzae (16.7%), and S. sclerotiorum (19.0%). Metabolite extracts of S. amritsarensis V31 significantly reduced the incidence of rice sheath blight both as preventive and curative sprays. Chemical profiling of the metabolites in DMSO extract of S. amritsarensis V31 revealed 6-amino-5-nitrosopyrimidine-2,4-diol as the predominant compound present. It was evident from the LC-MS analyses that S. amritsarensis V31 produced a mixture of potential antifungal compounds which inhibited the growth of different phytopathogenic fungi. The results of this study indicated that metabolite extracts of S. amritsarensis V31 can be exploited as a bio-fungicide to control phytopathogenic fungi.
Collapse
Affiliation(s)
- Mohammad Shahid
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Bansh Narayan Singh
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Shaloo Verma
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Sudipta Das
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India.
| | - Kumar Murugan
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| | - Sanjay Kumar Goswami
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
- ICAR-Indian Institute of Sugarcane Research (IISR), Uttar Pradesh, Lucknow, 226002, India
| | - Anil Kumar Saxena
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Kushmaur, Mau, 275103, India
| |
Collapse
|
5
|
Tagele SB, Kim RH, Shin JH. Interactions between Brassica Biofumigants and Soil Microbiota: Causes and Impacts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11538-11553. [PMID: 34551253 DOI: 10.1021/acs.jafc.1c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofumigation is used to control soil-borne plant diseases, and it has paramount importance to reduce the cost of chemical fumigants. Information about the field control efficacies and impacts of Brassica-based biofumigation (BBF) on soil bacterial and fungal microbiota is scattered in the literature. Therefore, this review summarizes and discusses the nature and the underlying causes of soil bacterial and fungal community dynamics in response to BBF. In addition, the major factors influencing the interaction between a biofumigant and soil microbiota are discussed. The pros and cons of BBF to soil microbiota and the subsequent impacts on sustainable farming practices are also highlighted.
Collapse
Affiliation(s)
- Setu Bazie Tagele
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ryeong-Hui Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Isolation and Characterization of Urease-Producing Soil Bacteria. Int J Microbiol 2021; 2021:8888641. [PMID: 34335782 PMCID: PMC8286177 DOI: 10.1155/2021/8888641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/11/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Urease is an enzyme produced by ureolytic microorganisms which hydrolyzes urea into ammonia and carbon dioxide. Microbial urease has wide applications in biotechnology, agriculture, medicine, construction, and geotechnical engineering. Urease-producing microbes can be isolated from different ecosystems such as soil, oceans, and various geological formations. The aim of this study was to isolate and characterize rapid urease-producing bacteria from Ethiopian soils. Using qualitative urease activity assay, twenty urease-producing bacterial isolates were screened and selected. Among these, three expressed urease at high rates as determined by a conductivity assay. The isolates were further characterized with respect to their biochemical, morphological, molecular, and exoenzyme profile characteristics. The active urease-producing bacterial isolates were found to be nonhalophilic to slightly halophilic neutrophiles and aerobic mesophiles with a range of tolerance towards pH (4.0-10.0), NaCl (0.25-5%), and temperature (20-40°C). According to the API ZYM assays, all three isolates were positive for alkaline phosphatase, leucine aryl amidase, acid phosphatase, and naphthol_AS_BI_phosphohydrolase. The closest described relatives of the selected three isolates (Isolate_3, Isolate_7, and Isolate_11) were Bacillus paramycoides, Citrobacter sedlakii, and Enterobacter bugandensis with 16S rRNA gene sequence identity of 99.0, 99.2, and 98.9%, respectively. From the study, it was concluded that the three strains appear to have a relatively higher potential for urease production and be able to grow under a wider range of growth conditions.
Collapse
|
7
|
Molecular-Based Identification of Actinomycetes Species That Synthesize Antibacterial Silver Nanoparticles. Int J Microbiol 2020. [DOI: 10.1155/2020/8816111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infectious diseases caused by antibiotic-resistant bacteria lead to a considerable increase in human morbidity and mortality globally. This requires to search potential actinomycete isolates from undiscovered habitats as a source of effective bioactive metabolites and to synthesis metabolite-mediated antibacterial silver nanoparticles (AgNPs). The main purpose of the present study was to identify actinomycetes isolated from Thika waste dump soils that produce bioactive metabolites to synthesize antibacterial AgNPs. The synthesis of metabolite-mediated AgNP was confirmed with visual detection and a UV-vis spectrophotometer, whereas the functional groups involved in AgNP synthesis were identified using a FTIR spectrophotometer. The antibacterial activity of the metabolite-mediated AgNPs was tested by a well diffusion assay. Identification of actinomycete isolates involved in the synthesis of antibacterial AgNPs was done based on 16S rRNA gene sequence analysis. The visual detection showed that dark salmon and pale golden color change was observed due to the formation of AgNPs by KDT32 and KGT32 metabolites, respectively. The synthesis was confirmed by a characteristic UV spectra peak at 415.5 nm for KDT32-AgNP and 416 nm for KGT32-AgNP. The FTIR spectra revealed that OH, C=C, and S-S functional groups were involved in the synthesis of KDT32-AgNP, whereas OH, C=C, and C-H were involved in the formation of KGT32-AgNP. The inhibition zone results revealed that KDT32-AgNP showed 22.0 ± 1.4 mm and 19.0 ± 1.4 mm against Escherichia coli and Salmonella typhi, whereas KGT32-AgNP showed 21.5 ± 0.7 mm and 17.0 ± 0.0 mm, respectively. KDT32 and KGT32 isolates were identified as genus Streptomyces and their 16S rRNA gene sequences were deposited in the GenBank database with MH301089 and MH301090 accession numbers, respectively. Due to the bactericidal activity of synthesized AgNPs, KDT32 and KGT32 isolates can be used in biomedical applications.
Collapse
|
8
|
Bondarev NV. Computer Analysis of Stability of Cation Complexes with
Ionophore Antibiotics. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220080149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Methanol-Essential Growth of Corynebacterium glutamicum: Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway. Int J Mol Sci 2020; 21:ijms21103617. [PMID: 32443885 PMCID: PMC7279501 DOI: 10.3390/ijms21103617] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered Corynebacterium glutamicum for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from Bacillus methanolicus and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from Bacillus subtilis enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of C. glutamicum to unleash the full potential of methanol as a carbon source in biotechnological processes.
Collapse
|