1
|
Fu J, Yan B, Gui S, Fu Y, Xia S. Anaerobic co-digestion of thermo-alkaline pretreated microalgae and sewage sludge: Methane potential and microbial community. J Environ Sci (China) 2023; 127:133-142. [PMID: 36522047 DOI: 10.1016/j.jes.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/17/2023]
Abstract
To improve methane production from sewage sludge (SS), co-digestion of SS and microalgae (MA) was studied and the application of thermo-alkaline pretreatment to MA was evaluated. The results showed that thermo-alkaline pretreatment at 90°C for 120 min on MA was the optimum pretreatment condition. Furthermore, when the volatile solids (VS) ratio of SS and MA was 1:2, the methane yield reached maximum (368.94 mL/g VS). Fourier transform infrared (FT-IR) and thermogravimetric analysis confirmed the synergetic effects of thermo-alkaline pretreated MA on its co-digestion with SS. The analyses of microbial community indicated that Methanobacterium and Methanosarcina were the dominant methanogens during the co-digestion process. However, the relative abundance of Methanosarcina in thermo-alkaline pretreated groups was higher compared to unpretreated groups. The microbial community structure might be affected by thermo-alkaline pretreatment rather than by the MA dosage in the co-digestion.
Collapse
Affiliation(s)
- Jiaqi Fu
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Bing Yan
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shuanglin Gui
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yinxuan Fu
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Song Xia
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
2
|
Zhuang H, Lee PH, Wu Z, Jing H, Guan J, Tang X, Tan GYA, Leu SY. Genomic driven factors enhance biocatalyst-related cellulolysis potential in anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 333:125148. [PMID: 33878497 DOI: 10.1016/j.biortech.2021.125148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a promising technology to recover bioenergy from biodegradable biomass, including cellulosic wastes. Through a few fractionation/separation techniques, cellulose has demonstrated its potential in AD, but the performance of the process is rather substrate-specific, as cellulolysis bacteria are sensitive to the enzyme-substrate interactions. Cellulosome is a self-assembled enzyme complex with many functionalized modules in the bacteria which has been gradually studied, however the genomic fingerprints of the culture-specific cellulosome in AD are relatively unclear especially under processing conditions. To clarify the key factors affecting the cellulosome induced cellulolysis, this review summarized the most recent publications of AD regarding the fates of cellulose, sources and functional genes of cellulosome, and omics methods for functional analyses. Different processes for organic treatment including applying food grinds in sewer, biomass valorization, cellulose fractionation, microaeration, and enzymatic hydrolysis enhanced fermentation, were highlighted to support the sustainable development of AD technology.
Collapse
Affiliation(s)
- Huichuan Zhuang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Po-Heng Lee
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Zhuoying Wu
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Houde Jing
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiaojing Tang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Giin-Yu Amy Tan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Shao-Yuan Leu
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Mahmudul HM, Rasul MG, Akbar D, Narayanan R, Mofijur M. A comprehensive review of the recent development and challenges of a solar-assisted biodigester system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141920. [PMID: 32889316 DOI: 10.1016/j.scitotenv.2020.141920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The extensive use of fossil fuels and the environmental effect of their combustion products have attracted researchers to look into renewable energy sources. In addition, global mass production of waste has motivated communities to recycle and reuse the waste in a sustainable way to lower landfill waste and associated problems. The development of waste to energy (WtE) technology including the production of bioenergy, e.g. biogas produced from various waste through Anaerobic Digestion (AD), is considered one of the potential measures to achieve the sustainable development goals of the United Nations (UN). Therefore, this study reviews the most recent studies from relevant academic literature on WtE technology (particularly AD technology) for biogas production and the application of a solar-assisted biodigester (SAB) system aimed at improving performance. In addition, socio-economic factors, challenges, and perspectives have been reported. From the analysis of different technologies, further work on effective low-cost technologies is recommended, especially using SAB system upgrading and leveraging the opportunities of this system. The study found that the performance of the AD system is affected by a variety of factors and that different approaches can be applied to improve performance. It has also been found that solar energy systems efficiently raise the biogas digester temperature and through this, they maximize the biogas yield under optimum conditions. The study revealed that the solar-assisted AD system produces less pollution and improves performance compared to the conventional AD system.
Collapse
Affiliation(s)
- H M Mahmudul
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia.
| | - M G Rasul
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia
| | - D Akbar
- School of Business and Law, Central Queensland University, QLD 4701, Australia
| | - R Narayanan
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia
| | - M Mofijur
- School of Information, Systems and Modelling, University of Technology Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| |
Collapse
|
4
|
Wang Y, Liu X, Liu Y, Wang D, Xu Q, Li X, Yang Q, Wang Q, Ni BJ, Chen H. Enhancement of short-chain fatty acids production from microalgae by potassium ferrate addition: Feasibility, mechanisms and implications. BIORESOURCE TECHNOLOGY 2020; 318:124266. [PMID: 33099096 DOI: 10.1016/j.biortech.2020.124266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic fermentation of microalgae was always hindered by its rigid cell wall structure. This paper reports a novel technique, i.e., adding potassium ferrate (K2FeO4) into microalgae fermentation systems to enhance short-chain fatty acids (SCFAs) production. The results showed that the maximum SCFAs production and acetic acid proportion were 732.6 mg COD/g VS and 54.6% at a dosage of 112.8 mg Fe(VI)/g VS, which were 168% and 208% of those in the control, respectively. Mechanism studies revealed that K2FeO4 effectively destroyed surface morphology and cell structure, and thus facilitated microalgae solubilization, providing a large number of biodegradable substrates for subsequent SCFA production. Although K2FeO4 inhibited all the microbial activities relevant to hydrolysis, acidification and methanogenesis processes to some degree, its inhibition to methanogens was much severer than that to other microbes. Illumina MiSeq sequencing analyses revealed that K2FeO4 addition increased the relative abundance (from 9.45% to 50.4%) of hydrolytic and SCFAs-forming bacteria.
Collapse
Affiliation(s)
- Yufen Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| |
Collapse
|
5
|
Hu Y, Wang J, Shen Y. Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121335. [PMID: 31590081 DOI: 10.1016/j.jhazmat.2019.121335] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic fermentation residues is a hazardous waste due to the existence of residual antibiotics and antibiotic resistance genes (ARGs), probably leading to the induction and spread of antibiotic resistant bacteria (ARB) in the environment, which could pose potential harm to the ecosystem and human health. It is urgent to develop an effective technology to remove the residual antibiotics and ARGs. In this study, the anaerobic digestion combined with gamma irradiation was applied for the disposal and utilization of cephalosporin C fermentation residues. The experimental results showed that the antibacterial activities of cephalosporin C against Staphylococcus aureus were significantly decreased after anaerobic digestion. The removal of tolC, a multidrug resistant gene, was improved up to 100% by the combination of gamma irradiation and anaerobic digestion compared to solely anaerobic digestion process, which may be due to the changes of microbial community structures induced by gamma irradiation.
Collapse
Affiliation(s)
- Yuming Hu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China; School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| |
Collapse
|
6
|
Zamorano-López N, Borrás L, Seco A, Aguado D. Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134365. [PMID: 31677459 DOI: 10.1016/j.scitotenv.2019.134365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/07/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Methane production from microalgae can be enhanced through anaerobic co-digestion with carbon-rich substrates and thus mitigate the inhibition risk associated with its low C:N ratio. Acclimated microbial communities for microalgae disruption can be used as a source of natural enzymes in bioenergy production. However, co-substrates with a certain microbial diversity such as primary sludge might shift the microbial structure. Substrates were generated in a Water Resource Recovery Facility (WRRF) and combined as follows: Scenedesmus or Chlorella digestion and microalgae co-digestion with primary sludge. The study was performed using two lab-scale Anaerobic Membrane Bioreactors (AnMBR). During three years, different feedstocks scenarios for methane production were evaluated with a special focus on the microbial diversity of the AnMBR. 57% of the population was shared between the different feedstock scenarios, revealing the importance of Anaerolineaceae members besides Smithella and Methanosaeta genera. The addition of primary sludge enhanced the microbial diversity of the system during both Chlorella and Scenedesmus co-digestion and promoted different microbial structures. Aceticlastic methanogen Methanosaeta was dominant in all the feedstock scenarios. A more remarkable role of syntrophic fatty acid degraders (Smithella, Syntrophobacteraceae) was observed during co-digestion when only microalgae were digested. However, no significant changes were observed in the microbial composition during anaerobic microalgae digestion when feeding only Chlorella or Scenedesmus. This is the first work revealing the composition of complex communities for semi-continuous bioenergy production from WRRF streams. The stability and maintenance of a microbial core over-time in semi-continuous AnMBRs is here shown supporting their future application in full-scale systems for raw microalgae digestion or co-digestion.
Collapse
Affiliation(s)
- N Zamorano-López
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain.
| | - L Borrás
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain.
| | - A Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain.
| | - D Aguado
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|