1
|
Russo G, Scocca P, Gelosia M, Fabbrizi G, Giannoni T, Urbani S, Esposto S, Nicolini A. Poly(3-hydroxybutyrate) production for food packaging from biomass derived carbohydrates by cupriavidus necator DSM 545. Enzyme Microb Technol 2024; 181:110516. [PMID: 39303458 DOI: 10.1016/j.enzmictec.2024.110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
The extensive utilization of conventional plastics has resulted in a concerning surge in waste. A potential solution lies in biodegradable polymers mostly derived from renewable sources. Cupriavidus necator DSM 545 is a microorganism capable, under stress conditions, of intracellularly accumulating Poly(3-hydroxybutyrate) (PHB), a bio-polyester. This study aimed to identify optimal conditions to maximize the intracellular accumulation of PHB and its global production using natural media obtained by processing lignocellulosic residues of cardoon, a low-cost feedstock. An intracellular PHB accumulation was observed in all of the tested media, indicating a metabolic stress induced by the lack of macronutrients. Increasing C/N ratios led to a significant decrease in cellular biomass and PHB production. Furthermore C. necator DSM 545 was incapable of consuming more than 25 g/L of supplied monosaccharides. Surprisingly, in the samples supplied with 60 % of the pentose-rich liquid fraction, complete consumption of xylose was observed. This result was also confirmed by subsequent tests using Medium 1 growth media containing xylose as the sole carbon source. Using a diluted medium with a C/N ratio of 5, a PHB production of 5.84 g/L and intracellular PHB accumulation of 77 % w/w were respectively achieved. Finally, comparative shelf-life tests conducted against conventional pre-packaging materials in PP suggested that PHB films performed similarly in preserve ready-to-eat products.
Collapse
Affiliation(s)
- Gianfrancesco Russo
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| | - Paola Scocca
- University of Perugia, Piazza Università 1, Perugia 06123, Italy
| | - Mattia Gelosia
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy.
| | - Giacomo Fabbrizi
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| | - Tommaso Giannoni
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| | - Stefania Urbani
- Department of the Science of Agriculture, Food and Environment, University of Perugia, Via S. Costanzo, Perugia 06126, Italy
| | - Sonia Esposto
- Department of the Science of Agriculture, Food and Environment, University of Perugia, Via S. Costanzo, Perugia 06126, Italy
| | - Andrea Nicolini
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| |
Collapse
|
2
|
Patel SKS, Singh D, Pant D, Gupta RK, Busi S, Singh RV, Lee JK. Polyhydroxyalkanoate Production by Methanotrophs: Recent Updates and Perspectives. Polymers (Basel) 2024; 16:2570. [PMID: 39339034 PMCID: PMC11435153 DOI: 10.3390/polym16182570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Methanotrophs are bacteria that consume methane (CH4) as their sole carbon and energy source. These microorganisms play a crucial role in the carbon cycle by metabolizing CH4 (the greenhouse gas), into cellular biomass and carbon dioxide (CO2). Polyhydroxyalkanoates (PHAs) are biopolymers produced by various microorganisms, including methanotrophs. PHA production using methanotrophs is a promising strategy to address growing concerns regarding plastic pollution and the need for sustainable, biodegradable materials. Various factors, including nutrient availability, environmental conditions, and metabolic engineering strategies, influence methanotrophic production. Nutrient limitations, particularly those of nitrogen or phosphorus, enhance PHA production by methanotrophs. Metabolic engineering approaches, such as the overexpression of key enzymes involved in PHA biosynthesis or the disruption of competing pathways, can also enhance PHA yields by methanotrophs. Overall, PHA production by methanotrophs represents a sustainable and versatile approach for developing biomedical materials with numerous potential applications. Additionally, alternative feedstocks, such as industrial waste streams or byproducts can be explored to improve the economic feasibility of PHA production. This review briefly describes the potential of methanotrophs to produce PHAs, with recent updates and perspectives.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Deepshikha Singh
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Diksha Pant
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Siddhardha Busi
- Department of Microbiology, Pondicherry University, Pondicherry 605014, Kalapet, India
| | - Rahul V Singh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Eam H, Ko D, Lee C, Myung J. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge. Microb Cell Fact 2024; 23:160. [PMID: 38822346 PMCID: PMC11140957 DOI: 10.1186/s12934-024-02442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.
Collapse
Affiliation(s)
- Hyerim Eam
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Dayoung Ko
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Kim Y, Flinkstrom Z, Candry P, Winkler MKH, Myung J. Resource availability governs polyhydroxyalkanoate (PHA) accumulation and diversity of methanotrophic enrichments from wetlands. Front Bioeng Biotechnol 2023; 11:1210392. [PMID: 37588137 PMCID: PMC10425282 DOI: 10.3389/fbioe.2023.1210392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Aquatic environments account for half of global CH4 emissions, with freshwater wetlands being the most significant contributors. These CH4 fluxes can be partially offset by aerobic CH4 oxidation driven by methanotrophs. Additionally, some methanotrophs can convert CH4 into polyhydroxyalkanoate (PHA), an energy storage molecule as well as a promising bioplastic polymer. In this study, we investigate how PHA-accumulating methanotrophic communities enriched from wetlands were shaped by varying resource availability (i.e., C and N concentrations) at a fixed C/N ratio. Cell yields, PHA accumulation, and community composition were evaluated in high (20% CH4 and 10 mM NH4 +) and low resource (0.2% CH4 and 0.1 mM NH4 +) conditions simulating engineered and environmental settings, respectively. High resource availability decreased C-based cell yields, while N-based cell yields remained stable, suggesting nutrient exchange patterns differed between methanotrophic communities at different resource concentrations. PHA accumulation was only observed in high resource enrichments, producing approximately 12.6% ± 2.4% (m/m) PHA, while PHA in low resource enrichments remained below detection. High resource enrichments were dominated by Methylocystis methanotrophs, while low resource enrichments remained significantly more diverse and contained only a minor population of methanotrophs. This study demonstrates that resource concentration shapes PHA-accumulating methanotrophic communities. Together, this provides useful information to leverage such communities in engineering settings as well as to begin understanding their role in the environment.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Zachary Flinkstrom
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Pieter Candry
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Mari-Karoliina H. Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
5
|
Tan Y, Stein LY, Sauvageau D. Methanol bioconversion in Methylotuvimicrobium buryatense 5GB1C through self-cycling fermentation. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02876-3. [PMID: 37160768 DOI: 10.1007/s00449-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Methanol is an abundant and low-cost next-generation carbon source. While many species of methanotrophic bacteria can convert methanol into valuable bioproducts in bioreactors, Methylotuvimicrobium buryatense 5GB1C stands out as one of the most promising strains for industrialization. It has a short doubling time compared to most methanotrophs, remarkable resilience against contamination, and a suite of tools enabling genetic engineering. When approaching industrial applications, growing M. buryatense 5GB1C on methanol using common batch reactor operation has important limitations; for example methanol toxicity leads to mediocre biomass productivity. Advanced bioreactor operation strategies, such as fed-batch and self-cycling fermentation, have the potential to greatly improve the industrial prospects of methanotrophs growing on methanol. Herein, implementation of fed-batch operation led to a 26-fold increase in biomass density, while two different self-cycling fermentation (SCF) strategies led to 3-fold and 10-fold increases in volumetric biomass productivity. Interestingly, while synchronization is a typical trait of microbial populations undergoing SCF, M. buryatense 5GB1C cultures growing under this mode of operation led to stable, reproducible cycles but no significant synchronization.
Collapse
Affiliation(s)
- Yusheng Tan
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St. NW, Edmonton, AB, T6G 1H9, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St. NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
6
|
An Overview on Methanotrophs and the Role of Methylosinus trichosporium OB3b for Biotechnological Applications. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Kulkarni PP, Chavan SB, Deshpande MS, Sagotra D, Kumbhar PS, Ghosalkar AR. Enrichment of Methylocystis dominant mixed culture from rice field for PHB production. J Biotechnol 2022; 343:62-70. [PMID: 34838616 DOI: 10.1016/j.jbiotec.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
Presence of methanotrophs in diverse environmental habitats helps to reduce emissions of greenhouse gas like methane. Isolation and culture of undiscovered wealth of methanotrophic organisms can help in exploitation of these organisms in value added products. The present study focuses on the enrichment of methanotroph dominated mixed microbial community by use of three stage strategy of revival, proliferation, and segregation. During the enrichment process amplicon sequencing of 16 s rRNA V3-V4 region showed relative abundance of mixed culture comprising single methanotrophic species of Methylocystis genus (88.92%) along with only three other species. Methylocystis dominant mixed culture (MMI-11) was observed to produce polyhydroxyalkanoates (PHA). During studies to identify favourable culture conditions, nitrate was found to be preferred nitrogen source for growth and PHA production. Cell growth ability to produce PHA was also evaluated at 14 L fermentor by supplying gas using continuous bubbling and through pressurization in the headspace. The mixed methanotrophic culture was found to accumulate maximum of 22.20% polyhydroxybutyrate (PHB) under nitrate limited condition. The molecular weight of PHB was found to be 2.221 × 105 g mol-1 with polydispersity of 1.82.
Collapse
Affiliation(s)
- Pranav P Kulkarni
- Department of Technology, Savitribai Phule Pune University, Pune, India; Praj Matrix - R&D Centre, division of Praj Industries Limited, Urawade, Pune, India
| | - Sambhaji B Chavan
- Praj Matrix - R&D Centre, division of Praj Industries Limited, Urawade, Pune, India
| | - Mandar S Deshpande
- Praj Matrix - R&D Centre, division of Praj Industries Limited, Urawade, Pune, India
| | - Dhanishta Sagotra
- Department of Technology, Savitribai Phule Pune University, Pune, India
| | - Pramod S Kumbhar
- Praj Matrix - R&D Centre, division of Praj Industries Limited, Urawade, Pune, India
| | - Anand R Ghosalkar
- Department of Technology, Savitribai Phule Pune University, Pune, India; Praj Matrix - R&D Centre, division of Praj Industries Limited, Urawade, Pune, India.
| |
Collapse
|
8
|
Yoon J, Oh MK. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. BIORESOURCE TECHNOLOGY 2022; 344:126307. [PMID: 34767907 DOI: 10.1016/j.biortech.2021.126307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Biosynthesis of polyhydroxyalkanoates (PHAs) from C1 gases is highly desirable in solving problems such as climate change and microplastic pollution. PHAs are biopolymers synthesized in microbial cells and can be used as alternatives to petroleum-based plastics because of their biodegradability. Because 50% of the cost of PHA production is due to organic carbon sources and salts, the utilization of costless C1 gases as carbon sources is expected to be a promising approach for PHA production. In this review, strategies for PHA production using C1 gases through fermentation and metabolic engineering are discussed. In particular, autotrophs, acetogens, and methanotrophs are strains that can produce PHA from CO2, CO, and CH4. In addition, integrated bioprocesses for the efficient utilization of C1 gases are introduced. Biorefinery processes from C1 gas into bioplastics are prospective strategies with promising potential and feasibility to alleviate environmental issues.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Systems Metabolic Engineering of Methanotrophic Bacteria for Biological Conversion of Methane to Value-Added Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:91-126. [DOI: 10.1007/10_2021_184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
In vivo quantification of polyhydroxybutyrate (PHB) in the alphaproteobacterial methanotroph, Methylocystis sp. Rockwell. Appl Microbiol Biotechnol 2021; 106:811-819. [PMID: 34921330 DOI: 10.1007/s00253-021-11732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Methane is a common industrial by-product that can be used as feedstock for production of the biopolymer polyhydroxybutyrate (PHB) by alphaproteobacterial methanotrophs. In vivo assessment of PHB production would shed light on the biosynthesis process and guide design of improved production strategies, but it is currently difficult to perform efficiently. In this study, the alphaproteobacterial methanotroph Methylocystis sp. Rockwell was grown on methane with three different nitrogen sources (ammonium, nitrate, and atmospheric nitrogen), and biomass samples were harvested at defined time points during lag, exponential, and stationary growth phases. PHB cell content was analyzed at these sampling points via a standard gas chromatography-flame ionization detector method, which requires hydrolysis of PHB and esterification of the resulting monomer under acidic conditions, and a novel, rapid, cost-effective approach based on fixation and staining of bacterial cells via Nile Blue A fluorescent dye enabling differential staining of cell membranes and intracellular PHB granules for single-cell analysis through fluorescence microscopy. Overall, the two PHB quantification approaches were in agreement at all stages of growth and in all three growing conditions tested. The PHB cell content was greatest with atmospheric nitrogen as a nitrogen source, followed by ammonium and nitrate. Under atmospheric nitrogen and ammonium conditions, PHB cell content decreased with growth progression, while under nitrate conditions PHB cell content remained unchanged in all growth phases. In addition to presenting a rapid, efficient method enabling in vivo quantification of PHB production, the present study highlights the impact of nitrogen source on PHB production by Methylocystis sp. Rockwell. KEY POINTS: • A novel fluorescence microscopy method to quantify PHB in single cells was developed • The microscopy method was validated by the derivation/gas chromatography method • Methylocystis sp. Rockwell synthesizes PHB granules without nutrient stress.
Collapse
|
11
|
Patel SKS, Shanmugam R, Lee JK, Kalia VC, Kim IW. Biomolecules Production from Greenhouse Gases by Methanotrophs. Indian J Microbiol 2021; 61:449-457. [PMID: 34744200 PMCID: PMC8542019 DOI: 10.1007/s12088-021-00986-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Harmful effects on living organisms and the environment are on the rise due to a significant increase in greenhouse gas (GHG) emissions through human activities. Therefore, various research initiatives have been carried out in several directions in relation to the utilization of GHGs via physicochemical or biological routes. An environmentally friendly approach to reduce the burden of significant emissions and their harmful effects is the bioconversion of GHGs, including methane (CH4) and carbon dioxide (CO2), into value-added products. Methanotrophs have enormous potential for the efficient biotransformation of CH4 to various bioactive molecules, including biofuels, polyhydroxyalkanoates, and fatty acids. This review highlights the recent developments in methanotroph-based systems for methanol production from GHGs and proposes future perspectives to improve process sustainability via biorefinery approaches.
Collapse
Affiliation(s)
- Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Ramsamy Shanmugam
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - Vipin C. Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
12
|
Gęsicka A, Oleskowicz-Popiel P, Łężyk M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol Adv 2021; 53:107861. [PMID: 34710553 DOI: 10.1016/j.biotechadv.2021.107861] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Methane is an abundant and low-cost gas with high global warming potential and its use as a feedstock can help mitigate climate change. Variety of valuable products can be produced from methane by methanotrophs in gas fermentation processes. By using methane as a sole carbon source, methanotrophic bacteria can produce bioplastics, biofuels, feed additives, ectoine and variety of other high-value chemical compounds. A lot of studies have been conducted through the years for natural methanotrophs and engineered strains as well as methanotrophic consortia. These have focused on increasing yields of native products as well as proof of concept for the synthesis of new range of chemicals by metabolic engineering. This review shows trends in the research on key methanotrophic bioproducts since 2015. Despite certain limitations of the known production strategies that makes commercialization of methane-based products challenging, there is currently much attention placed on the promising further development.
Collapse
Affiliation(s)
- Aleksandra Gęsicka
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
13
|
Lazic M, Sugden S, Sauvageau D, Stein LY. Metabolome profiles of the alphaproteobacterial methanotroph Methylocystis sp. Rockwell in response to carbon and nitrogen source. FEMS Microbiol Lett 2021; 368:6055661. [PMID: 33378457 DOI: 10.1093/femsle/fnaa219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023] Open
Abstract
Methanotrophs use methane as a sole carbon source and thus play a critical role in its global consumption. Intensified interest in methanotrophs for their low-cost production of value-added products and large-scale industrialization has led to investigations of strain-to-strain variation in parameters for growth optimization and metabolic regulation. In this study, Methylocystis sp. Rockwell was grown with methane or methanol as a carbon source and ammonium or nitrate as a nitrogen source. The intracellular metabolomes and production of polyhydroxybutyrate, a bioplastic precursor, were compared among treatments to determine how the different combinations of carbon and nitrogen sources affected metabolite production. The methane-ammonium condition resulted in the highest growth, followed by the methane-nitrate, methanol-nitrate and methanol-ammonium conditions. Overall, the methane-ammonium and methane-nitrate conditions directed metabolism toward energy-conserving pathways, while methanol-ammonium and methanol-nitrate directed the metabolic response toward starvation pathways. Polyhydroxybutyrate was produced at greater abundances in methanol-grown cells, independent of the nitrogen source. Together, the results revealed how Methylocystis sp. Rockwell altered its metabolism with different combinations of carbon and nitrogen source, with implications for production of industrially relevant metabolites.
Collapse
Affiliation(s)
- Marina Lazic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Scott Sugden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Cui P, Shao Y, Wang Y, Zhao R, Zhan H, Zhong W. Co-production of polyhydroxybutyrate (PHB) and coenzyme Q10 (CoQ10) via no-sugar fermentation—a case by Methylobacterium sp. XJLW. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
To explore a competitive PHB-producing fermentation process, this study evaluated the potential for Methylobacterium sp. XJLW to produce simultaneously PHB and coenzyme Q10 (CoQ10) using methanol as sole carbon and energy source.
Methods
The metabolic pathways of PHB and CoQ10 biosynthesis in Methylobacterium sp. XJLW were first mined based on the genomic and comparative transcriptomics information. Then, real-time fluorescence quantitative PCR (RT-qPCR) was employed for comparing the expression level of important genes involved in PHB and CoQ10 synthesis pathways’ response to methanol and glucose. Transmission electron microscope (TEM), gas chromatography/mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), Fourier transformation infrared spectrum (FT-IR), and liquid chromatography/mass spectrometry (LC-MS) methods were used to elucidate the yield and structure of PHB and CoQ10, respectively. PHB and CoQ10 productivity of Methylobacterium sp. XJLW were evaluated in Erlenmeyer flask for medium optimization, and in a 5-L bioreactor for methanol fed-batch strategy according to dissolved oxygen (DO) and pH control.
Results
Comparative genomics analysis showed that the PHB and CoQ10 biosynthesis pathways co-exist in Methylobacterium sp. XJLW. Transcriptomics analysis showed that the transcription level of key genes in both pathways responding to methanol was significantly higher than that responding to glucose. Correspondingly, strain Methylobacterium sp. XJLW can produce PHB and CoQ10 simultaneously with higher yield using cheap and abundant methanol than using glucose as sole carbon and energy source. The isolated products showed the structure characteristics same to that of standard PHB and CoQ10. The optimal medium and cultural conditions for PHB and CoQ10 co-production by Methylobacterium sp. XJLW was in M3 medium containing 7.918 g L-1 methanol, 0.5 g L-1 of ammonium sulfate, 0.1% (v/v) of Tween 80, and 1.0 g L-1 of sodium chloride, under 30 °C and pH 7.0. In a 5-L bioreactor coupled with methanol fed-batch process, a maximum DCW value (46.31 g L-1) with the highest yields of PHB and CoQ10, reaching 6.94 g L-1 and 22.28 mg L-1, respectively.
Conclusion
Methylobacterium sp. XJLW is potential for efficiently co-producing PHB and CoQ10 employing methanol as sole carbon and energy source. However, it is still necessary to further optimize fermentation process, and genetically modify strain pathway, for enhanced production of PHB and CoQ10 simultaneously by Methylobacterium sp. XJLW. It also suggests a potential strategy to develop efficiently co-producing other high-value metabolites using methanol-based bioprocess.
Collapse
|
15
|
Tays C, Guarnieri MT, Sauvageau D, Stein LY. Combined Effects of Carbon and Nitrogen Source to Optimize Growth of Proteobacterial Methanotrophs. Front Microbiol 2018; 9:2239. [PMID: 30319568 PMCID: PMC6167414 DOI: 10.3389/fmicb.2018.02239] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
Methane, a potent greenhouse gas, and methanol, commonly called wood alcohol, are common by-products of modern industrial processes. They can, however, be consumed as a feedstock by bacteria known as methanotrophs, which can serve as useful vectors for biotransformation and bioproduction. Successful implementation in industrial settings relies upon efficient growth and bioconversion, and the optimization of culturing conditions for these bacteria remains an ongoing effort, complicated by the wide variety of characteristics present in the methanotroph culture collection. Here, we demonstrate the variable growth outcomes of five diverse methanotrophic strains – Methylocystis sp. Rockwell, Methylocystis sp. WRRC1, Methylosinus trichosporium OB3b, Methylomicrobium album BG8, and Methylomonas denitrificans FJG1 – grown on either methane or methanol, at three different concentrations, with either ammonium or nitrate provided as nitrogen source. Maximum optical density (OD), growth rate, and biomass yield were assessed for each condition. Further metabolite and fatty acid methyl ester (FAME) analyses were completed for Methylocystis sp. Rockwell and M. album BG8. The results indicate differential response to these growth conditions, with a general preference for ammonium-based growth over nitrate, except for M. denitrificans FJG1. Methane is also preferred by most strains, with methanol resulting in unreliable or inhibited growth in all but M. album BG8. Metabolite analysis points to monitoring of excreted formic acid as a potential indicator of adverse growth conditions, while the magnitude of FAME variation between conditions may point to strains with broader substrate tolerance. These findings suggest that methanotroph strains must be carefully evaluated before use in industry, both to identify optimal conditions and to ensure the strain selected is appropriate for the process of interest. Much work remains in addressing the optimization of growth strategies for these promising microorganisms since disregarding these important steps in process development could ultimately lead to inefficient or failed bioprocesses.
Collapse
Affiliation(s)
- Catherine Tays
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|