1
|
Yu J, Zheng Y, Song C, Chen S. New insights into the roles of fungi and bacteria in the development of medicinal plant. J Adv Res 2024; 65:137-152. [PMID: 38092299 PMCID: PMC11518954 DOI: 10.1016/j.jare.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China.
| |
Collapse
|
2
|
Zhang P, Gao J, Zhang H, Wang Y, Liu Z, Lee SY, Mao X. Metabolic engineering of Escherichia coli for the production of an antifouling agent zosteric acid. Metab Eng 2023; 76:247-259. [PMID: 36822462 DOI: 10.1016/j.ymben.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Zosteric acid (ZA) is a Zostera species-derived, sulfated phenolic acid compound with antifouling activity and has gained much attention due to its nontoxic and biodegradable characteristics. However, the yield of Zostera species available for ZA extraction is limited by natural factors, such as season, latitude, light, and temperature. Here we report the development of metabolically engineered Escherichia coli strains capable of producing ZA from glucose and glycerol. First, intracellular availability of the sulfur donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) was enhanced by knocking out the cysH gene responsible for PAPS consumption and overexpressing the genes required for PAPS biosynthesis. Co-overexpression of the genes encoding tyrosine ammonia-lyase, sulfotransferase 1A1, ATP sulfurylase, and adenosine 5'-phosphosulfate kinase constructed ZA producing strain with enhanced PAPS supply. Second, the feedback-resistant forms of aroG and tyrA genes (encoding 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase and chorismate mutase, respectively) were overexpressed to relieve the feedback regulation of L-tyrosine biosynthesis. Third, the pykA gene involved in phosphoenolpyruvate-consuming reaction, the regulator gene tyrR, the competing pathway gene pheA, and the ptsHIcrr genes essential for the PEP:carbohydrate phosphotransferase system were deleted. Moreover, all genes involved in the shikimate pathway and the talA, tktA, and tktB genes in the pentose phosphate pathway were examined for ZA production. The PTS-independent glucose uptake system, the expression vector system, and the carbon source were also optimized. As a result, the best-performing strain successfully produced 1.52 g L-1 ZA and 1.30 g L-1p-hydroxycinnamic acid from glucose and glycerol in a 700 mL fed-batch bioreactor.
Collapse
Affiliation(s)
- Peichao Zhang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jing Gao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haiyang Zhang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yongzhen Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhen Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), BioProcess Engineering Research Center, Institute for the BioCentury, KAIST, Daejeon, Republic of Korea.
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
3
|
Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022; 13:5434. [PMID: 36114189 PMCID: PMC9481576 DOI: 10.1038/s41467-022-33111-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023] Open
Abstract
Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.
Collapse
Affiliation(s)
- Yuda Chen
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shikai Jin
- grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Mengxi Zhang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yu Hu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Kuan-Lin Wu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Anna Chung
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shichao Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Zeru Tian
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yixian Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Peter G. Wolynes
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Han Xiao
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005 USA
| |
Collapse
|
4
|
Le HH, Lee MT, Besler KR, Comrie JMC, Johnson EL. Characterization of interactions of dietary cholesterol with the murine and human gut microbiome. Nat Microbiol 2022; 7:1390-1403. [PMID: 35982311 PMCID: PMC9417993 DOI: 10.1038/s41564-022-01195-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/04/2022] [Indexed: 12/18/2022]
Abstract
Consumption of dietary lipids, such as cholesterol, modulates the gut microbiome with consequences for host health through the production of microbiome-derived metabolites. Despite the implications for host metabolism, a limited number of specific interactions of the gut microbiome with diet-derived lipids have been characterized. This is partially because obtaining species-level resolution of the responsible taxa can be challenging and additional approaches are needed to identify health-relevant metabolites produced from cholesterol-microbiome interactions. Here we performed bio-orthogonal labelling sort sequence spectrometry, a click chemistry based workflow, to profile cholesterol-specific host-microbe interactions. Mice were exposed to an alkyne-functionalized variant of cholesterol and 16S ribosomal RNA gene amplicon sequencing of faecal samples identified diet-derived cholesterol-interacting microbes from the genera Bacteroides, Bifidobacterium, Enterococcus and Parabacteroides. Shotgun metagenomic analysis provided species-level resolution of diet-derived cholesterol-interacting microbes with enrichment of bile acid-like and sulfotransferase-like activities. Using untargeted metabolomics, we identify that cholesterol is converted to cholesterol sulfate in a Bacteroides-specific manner via the enzyme BT_0416. Mice monocolonized with Bacteroides thetaiotaomicron lacking Bt_0416 showed altered host cholesterol and cholesterol sulfate compared with wild-type mice, identifying a previously uncharacterized microbiome-transformation of cholesterol and a mechanism for microbiome-dependent contributions to host phenotype. Moreover, identification of a cholesterol-responsive sulfotransferase in Bacteroides suggests diet-dependent mechanisms for altering microbiome-specific cholesterol metabolism. Overall, our work identifies numerous cholesterol-interacting microbes with implications for more precise microbiome-conscious regulation of host cholesterol homeostasis.
Collapse
Affiliation(s)
- Henry H Le
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | - Min-Ting Lee
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | - Kevin R Besler
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | - Janine M C Comrie
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | | |
Collapse
|
5
|
Poudel PB, Pandey RP, Dhakal D, Kim TS, Nguyen TTH, Jung HJ, Shin HJ, Timalsina B, Sohng JK. Functional Characterization of a Regiospecific Sugar- O-Methyltransferase from Nocardia. Appl Environ Microbiol 2022; 88:e0075422. [PMID: 35703553 PMCID: PMC9275233 DOI: 10.1128/aem.00754-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Methyltransferases transfer a methyl group to a diverse group of natural products, thus providing structural diversity, stability, and altered pharmacological properties to the molecules. A limited number of regiospecific sugar-O-methyltransferases are functionally characterized. Thus, discovery of such an enzyme could solve the difficulties of biological production of methoxy derivatives of glycosylated molecules. In the current study, a regiospecific sugar-O-methyltransferase, ThnM1, belonging to the biosynthetic gene cluster (BGC) of 1-(α-L-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene produced by Nocardia sp. strain CS682, was analyzed and functionally characterized. ThnM1 demonstrated promiscuity to diverse chemical structures such as rhamnose-containing anthraquinones and flavonoids with regiospecific methylation at the 2'-hydroxyl group of the sugar moiety. Compared with other compounds, anthraquinone rhamnosides were found to be the preferred substrates for methylation. Thus, the enzyme was further employed for whole-cell biotransformation using engineered Escherichia coli to produce a methoxy-rhamnosyl derivative of quinizarin, an anthraquinone derivative. The structure of the newly generated derivative from Escherichia coli fermentation was elucidated by liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopic analyses and identified as quinizarin-4-O-α-l-2-O-methylrhamnoside (QRM). Further, the biological impact of methylation was studied by comparing the cytotoxicity of QRM with that of quinizarin against the U87MG, SNU-1, and A375SM cancer cell lines. IMPORTANCE ThnM1 is a putative sugar-O-methyltransferase produced by the Nocardia sp. strain CS682 and is encoded by a gene belonging to the biosynthetic gene cluster (BGC) of 1-(α-l-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene. We demonstrated that ThnM1 is a promiscuous enzyme with regiospecific activity at the 2'-OH of rhamnose. As regiospecific methylation of sugars by chemical synthesis is a challenging step, ThnM1 may fill the gap in the potential diversification of natural products by methylating the rhamnose moiety attached to them.
Collapse
Affiliation(s)
- Purna Bahadur Poudel
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Ramesh Prasad Pandey
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Dipesh Dhakal
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Tae-Su Kim
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Trang Thi Huyen Nguyen
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Hye Jin Jung
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of Biotechnology and Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Hee Jeong Shin
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
- Department of Biotechnology and Pharmaceutical Engineering, Sun Moon University, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
6
|
Abstract
Terpenoids represent the largest group of secondary metabolites with variable structures and functions. Terpenoids are well known for their beneficial application in human life, such as pharmaceutical products, vitamins, hormones, anticancer drugs, cosmetics, flavors and fragrances, foods, agriculture, and biofuels. Recently, engineering microbial cells have been provided with a sustainable approach to produce terpenoids with high yields. Noticeably, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has emerged as one of the most efficient genome-editing technologies to engineer microorganisms for improving terpenoid production. In this review, we summarize the application of the CRISPR-Cas system for the production of terpenoids in microbial hosts such as Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Pseudomonas putida. CRISPR-Cas9 deactivated Cas9 (dCas9)-based CRISPR (CRISPRi), and the dCas9-based activator (CRISPRa) have been used in either individual or combinatorial systems to control the metabolic flux for enhancing the production of terpenoids. Finally, the prospects of using the CRISPR-Cas system in terpenoid production are also discussed.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Viet Nam.,Bioresource Research Center, Phenikaa University, Hanoi, Viet Nam
| |
Collapse
|
7
|
Xu R, Wang Y, Huang H, Jin X, Li J, Du G, Kang Z. Closed-Loop System Driven by ADP Phosphorylation from Pyrophosphate Affords Equimolar Transformation of ATP to 3′-Phosphoadenosine-5′-phosphosulfate. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuerong Jin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Haskett TL, Tkacz A, Poole PS. Engineering rhizobacteria for sustainable agriculture. THE ISME JOURNAL 2021; 15:949-964. [PMID: 33230265 PMCID: PMC8114929 DOI: 10.1038/s41396-020-00835-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Exploitation of plant growth promoting (PGP) rhizobacteria (PGPR) as crop inoculants could propel sustainable intensification of agriculture to feed our rapidly growing population. However, field performance of PGPR is typically inconsistent due to suboptimal rhizosphere colonisation and persistence in foreign soils, promiscuous host-specificity, and in some cases, the existence of undesirable genetic regulation that has evolved to repress PGP traits. While the genetics underlying these problems remain largely unresolved, molecular mechanisms of PGP have been elucidated in rigorous detail. Engineering and subsequent transfer of PGP traits into selected efficacious rhizobacterial isolates or entire bacterial rhizosphere communities now offers a powerful strategy to generate improved PGPR that are tailored for agricultural use. Through harnessing of synthetic plant-to-bacteria signalling, attempts are currently underway to establish exclusive coupling of plant-bacteria interactions in the field, which will be crucial to optimise efficacy and establish biocontainment of engineered PGPR. This review explores the many ecological and biotechnical facets of this research.
Collapse
Affiliation(s)
- Timothy L. Haskett
- grid.4991.50000 0004 1936 8948Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
| | - Andrzej Tkacz
- grid.4991.50000 0004 1936 8948Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
| | - Philip S. Poole
- grid.4991.50000 0004 1936 8948Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
| |
Collapse
|
9
|
Badri A, Williams A, Awofiranye A, Datta P, Xia K, He W, Fraser K, Dordick JS, Linhardt RJ, Koffas MAG. Complete biosynthesis of a sulfated chondroitin in Escherichia coli. Nat Commun 2021; 12:1389. [PMID: 33654100 PMCID: PMC7925653 DOI: 10.1038/s41467-021-21692-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfated glycosaminoglycans (GAGs) are a class of important biologics that are currently manufactured by extraction from animal tissues. Although such methods are unsustainable and prone to contamination, animal-free production methods have not emerged as competitive alternatives due to complexities in scale-up, requirement for multiple stages and cost of co-factors and purification. Here, we demonstrate the development of single microbial cell factories capable of complete, one-step biosynthesis of chondroitin sulfate (CS), a type of GAG. We engineer E. coli to produce all three required components for CS production–chondroitin, sulfate donor and sulfotransferase. In this way, we achieve intracellular CS production of ~27 μg/g dry-cell-weight with about 96% of the disaccharides sulfated. We further explore four different factors that can affect the sulfation levels of this microbial product. Overall, this is a demonstration of simple, one-step microbial production of a sulfated GAG and marks an important step in the animal-free production of these molecules. Chondroitin sulfate (CS) is a type of sulfated glycosaminoglycan that is manufactured by extraction from animal tissues for the treatment of osteoarthritis and in drug delivery applications. Here, the authors report the development of single microbial cell factories capable of compete, one-step biosynthesis of animal-free CS production in E. coli.
Collapse
Affiliation(s)
- Abinaya Badri
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Asher Williams
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Adeola Awofiranye
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Payel Datta
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ke Xia
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Wenqin He
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith Fraser
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA. .,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
10
|
Nawade B, Yahyaa M, Davidovich-Rikanati R, Lewinsohn E, Ibdah M. Optimization of Culture Conditions for the Efficient Biosynthesis of Trilobatin from Phloretin by Engineered Escherichia coli Harboring the Apple Phloretin-4'- O-glycosyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14212-14220. [PMID: 33089679 DOI: 10.1021/acs.jafc.0c04964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trilobatin, a dihydrochalcone glucoside and natural sweetener, has diverse biological and therapeutic properties. In the present study, we developed a microbial system to produce trilobatin from phloretin using Escherichia coli (E. coli) overexpressing the phloretin-4'-O-glycosyltransferase from Malus x domestica Borkh. Various optimization strategies were employed for the efficient production of trilobatin using a one-factor-at-a-time method. The effect of UDP-glucose supplementation, substrate, and inducer concentrations, time of substrate feeding as well as protein induction, and different culture media combinations were evaluated and optimized to enhance the production of trilobatin. As a result, the highest trilobatin production, 246.83 μM (107.64 mg L-1), was obtained with an LB-TB medium combination, 22 h of induction with 0.1 mM IPTG followed by 4 h of feeding with 250 μM phloretin and without extracellular UDP-glucose supplementation. These results demonstrate the efficient production of trilobatin and constitute a promising foundation for large-scale production of the dihydrochalcone glycosides in engineered E. coli.
Collapse
Affiliation(s)
- Bhagwat Nawade
- Newe Ya'ar Research Center, ARO, Ramat Yishay 30095, Israel
| | - Mosaab Yahyaa
- Newe Ya'ar Research Center, ARO, Ramat Yishay 30095, Israel
| | | | | | - Mwafaq Ibdah
- Newe Ya'ar Research Center, ARO, Ramat Yishay 30095, Israel
| |
Collapse
|
11
|
Ding W, Zhang Y, Shi S. Development and Application of CRISPR/Cas in Microbial Biotechnology. Front Bioeng Biotechnol 2020; 8:711. [PMID: 32695770 PMCID: PMC7338305 DOI: 10.3389/fbioe.2020.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has been rapidly developed as versatile genomic engineering tools with high efficiency, accuracy and flexibility, and has revolutionized traditional methods for applications in microbial biotechnology. Here, key points of building reliable CRISPR/Cas system for genome engineering are discussed, including the Cas protein, the guide RNA and the donor DNA. Following an overview of various CRISPR/Cas tools for genome engineering, including gene activation, gene interference, orthogonal CRISPR systems and precise single base editing, we highlighted the application of CRISPR/Cas toolbox for multiplexed engineering and high throughput screening. We then summarize recent applications of CRISPR/Cas systems in metabolic engineering toward production of chemicals and natural compounds, and end with perspectives of future advancements.
Collapse
Affiliation(s)
- Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
12
|
Schultenkämper K, Brito LF, Wendisch VF. Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem 2020; 67:7-21. [DOI: 10.1002/bab.1901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Luciana F. Brito
- Department of Biotechnology and Food ScienceNTNUNorwegian University of Science and Technology Trondheim Norway
| | | |
Collapse
|
13
|
Chu LL, Pandey RP, Dhakal D, Sohng JK. Increased Production of Dicinnamoylmethane Via Improving Cellular Malonyl-CoA Level by Using a CRISPRi in Escherichia coli. Appl Biochem Biotechnol 2019; 190:325-340. [PMID: 31853874 DOI: 10.1007/s12010-019-03206-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Curcuminoids are natural phenylpropanoids that are biosynthesized via an L-phenylalanine metabolism pathway in turmeric (Curcuma longa L.). Curcuminoids have various chemopreventive activities and pharmaceutical applications in human life. In this study, we synthesized dicinnamoylmethane, one principal component of curcuminoids, from cinnamic acid by means of co-expression of Oryza sativa curcuminoid synthase and Petroselinum crispum 4-coumarate-CoA ligase in Escherichia coli BL21 (DE3). Moreover, we used CRISPRi systems to knock down the genes in a tricarboxylic acid cycle and fatty acid biosynthesis pathway. The repression of target genes led to an increase of up to 0.236 μmol g-1 DCW of malonyl-CoA in cytosol-engineered E. coli and subsequently increased the biosynthesis of dicinnamoylmethane. We found that the S10 strain containing a CRISPRi repression for three genes, fabF, fabD, and mdh, showed the highest amount of dicinnamoylmethane of 7.54 μM, which is 5.76-fold higher than that of the wild-type strain. Finally, 41.94 μM (~ 11.6 mg) of dicinnamoylmethane was obtained in a 3-L fermenter.
Collapse
Affiliation(s)
- Luan Luong Chu
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea. .,Department of Pharmaceutical Engineering & Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
14
|
Shah FLA, Ramzi AB, Baharum SN, Noor NM, Goh HH, Leow TC, Oslan SN, Sabri S. Recent advancement of engineering microbial hosts for the biotechnological production of flavonoids. Mol Biol Rep 2019; 46:6647-6659. [PMID: 31535322 DOI: 10.1007/s11033-019-05066-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/25/2019] [Indexed: 01/12/2023]
Abstract
Flavonoids are polyphenols that are important organic chemicals in plants. The health benefits of flavonoids that result in high commercial values make them attractive targets for large-scale production through bioengineering. Strategies such as engineering a flavonoid biosynthetic pathway in microbial hosts provide an alternative way to produce these beneficial compounds. Escherichia coli, Saccharomyces cerevisiae and Streptomyces sp. are among the expression systems used to produce recombinant products, as well as for the production of flavonoid compounds through various bioengineering approaches including clustered regularly interspaced short palindromic repeats (CRISPR)-based genome engineering and genetically encoded biosensors to detect flavonoid biosynthesis. In this study, we review the recent advances in engineering model microbial hosts as being the factory to produce targeted flavonoid compounds.
Collapse
Affiliation(s)
- Fatin Lyana Azman Shah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
| |
Collapse
|
15
|
Badri A, Williams A, Xia K, Linhardt RJ, Koffas MAG. Increased 3'-Phosphoadenosine-5'-phosphosulfate Levels in Engineered Escherichia coli Cell Lysate Facilitate the In Vitro Synthesis of Chondroitin Sulfate A. Biotechnol J 2019; 14:e1800436. [PMID: 31180182 DOI: 10.1002/biot.201800436] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/01/2019] [Indexed: 12/16/2022]
Abstract
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one-step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least-explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000-fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin-4-sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4-fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS-accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one-step microbial synthesis of CS. This will provide a new platform to produce CS.
Collapse
Affiliation(s)
- Abinaya Badri
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA
| | - Asher Williams
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA.,Department of Biology, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA
| | - Mattheos A G Koffas
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA.,Department of Biology, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA
| |
Collapse
|
16
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|