1
|
Scala V, Scortichini M, Marini F, La Montagna D, Beccaccioli M, Micalizzi K, Cacciotti A, Pucci N, Tatulli G, Fiorani R, Loreti S, Reverberi M. Assessment of Fatty Acid and Oxylipin Profile of Resprouting Olive Trees Positive to Xylella fastidiosa subsp. pauca in Salento (Apulia, Italy). PLANTS (BASEL, SWITZERLAND) 2024; 13:2186. [PMID: 39204622 PMCID: PMC11358993 DOI: 10.3390/plants13162186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Xylella fastidiosa subsp. pauca ST53 (XFP), the causal agent of olive quick decline syndrome (OQDS), was thoroughly investigated after a 2013 outbreak in the Salento region of Southern Italy. Some trees from Ogliarola Salentina and Cellina di Nardò, susceptible cultivars in the Gallipoli area, the first XFP infection hotspot in Italy, have resprouted crowns and are starting to flower and yield fruits. Satellite imagery and Normalized Difference Vegetation Index analyses revealed a significant improvement in vegetation health and productivity from 2018 to 2022 of these trees. Lipid molecules have long been recognized as plant defense modulators, and recently, we investigated their role in XFP-positive hosts and in XFP-resistant as well as in XFP-susceptible cultivars of olive trees. Here, we present a case study regarding 36 olive trees (12 XFP-positive resprouting, 12 XFP-positive OQDS-symptomatic, and 12 XFP-negative trees) harvested in 2022 within the area where XFP struck first, killing millions of trees in a decade. These trees were analyzed for some free fatty acid, oxylipin, and plant hormones, in particular jasmonic and salicylic acid, by targeted LC-MS/MS. Multivariate analysis revealed that lipid markers of resistance (e.g., 13-HpOTrE), along with jasmonic and salicylic acid, were accumulated differently in the XFP-positive resprouting trees from both cultivars with respect to XFP-positive OQDS symptomatic and XFP-negative trees, suggesting a correlation of lipid metabolism with the resprouting, which can be an indication of the resiliency of these trees to OQDS. This is the first report concerning the resprouting of OQDS-infected olive trees in the Salento area.
Collapse
Affiliation(s)
- Valeria Scala
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (N.P.); (G.T.); (R.F.); (S.L.)
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Fruit and Citrus Crops Research Centre for Olive, Fruit and Citrus Crops, 00134 Roma, Italy;
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, 00185 Roma, Italy;
| | - Dario La Montagna
- Department of Environmental Biology, Sapienza University of Rome, 00185 Roma, Italy; (D.L.M.); (M.B.); (K.M.); (A.C.); (M.R.)
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Roma, Italy; (D.L.M.); (M.B.); (K.M.); (A.C.); (M.R.)
| | - Kristina Micalizzi
- Department of Environmental Biology, Sapienza University of Rome, 00185 Roma, Italy; (D.L.M.); (M.B.); (K.M.); (A.C.); (M.R.)
| | - Andrea Cacciotti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Roma, Italy; (D.L.M.); (M.B.); (K.M.); (A.C.); (M.R.)
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (N.P.); (G.T.); (R.F.); (S.L.)
| | - Giuseppe Tatulli
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (N.P.); (G.T.); (R.F.); (S.L.)
| | - Riccardo Fiorani
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (N.P.); (G.T.); (R.F.); (S.L.)
| | - Stefania Loreti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, 00156 Roma, Italy; (N.P.); (G.T.); (R.F.); (S.L.)
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, 00185 Roma, Italy; (D.L.M.); (M.B.); (K.M.); (A.C.); (M.R.)
| |
Collapse
|
2
|
Serio F, Imbriani G, Girelli CR, Miglietta PP, Scortichini M, Fanizzi FP. A Decade after the Outbreak of Xylella fastidiosa subsp. pauca in Apulia (Southern Italy): Methodical Literature Analysis of Research Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:1433. [PMID: 38891241 PMCID: PMC11175074 DOI: 10.3390/plants13111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
In 2013, an outbreak of Xylella fastidiosa (Xf) was identified for the first time in Europe, in the extreme south of Italy (Apulia, Salento territory). The locally identified subspecies pauca turned out to be lethal for olive trees, starting an unprecedented phytosanitary emergency for one of the most iconic cultivations of the Mediterranean area. Xf pauca (Xfp) is responsible for a severe disease, the olive quick decline syndrome (OQDS), spreading epidemically and with dramatic impact on the agriculture, the landscape, the tourism and the cultural heritage of this region. The bacterium, transmitted by insects that feed on xylem sap, causes rapid wilting in olive trees due to biofilm formation, which obstructs the plant xylematic vessels. The aim of this review is to perform a thorough analysis that offers a general overview of the published work, from 2013 to December 2023, related to the Xfp outbreak in Apulia. This latter hereto has killed millions of olive trees and left a ghostly landscape with more than 8000 square kilometers of infected territory, that is 40% of the region. The majority of the research efforts made to date to combat Xfp in olive plants are listed in the present review, starting with the early attempts to identify the bacterium, the investigations to pinpoint and possibly control the vector, the assessment of specific diagnostic techniques and the pioneered therapeutic approaches. Interestingly, according to the general set criteria for the preliminary examination of the accessible scientific literature related to the Xfp outbreak on Apulian olive trees, fewer than 300 papers can be found over the last decade. Most of them essentially emphasize the importance of developing diagnostic tools that can identify the disease early, even when infected plants are still asymptomatic, in order to reduce the risk of infection for the surrounding plants. On the other hand, in the published work, the diagnostic focus (57%) overwhelmingly encompasses all other possible investigation goals such as vectors, impacts and possible treatments. Notably, between 2013 and 2023, only 6.3% of the literature reports addressing the topic of Xfp in Apulia were concerned with the application of specific treatments against the bacterium. Among them, those reporting field trials on infected plants, including simple pruning indications, were further limited (6%).
Collapse
Affiliation(s)
- Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Giovanni Imbriani
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Pier Paolo Miglietta
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA)-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello, 52, 00134 Roma, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| |
Collapse
|
3
|
Adigun OA, Pham TH, Grapov D, Nadeem M, Jewell LE, Cheema M, Galagedara L, Thomas R. Phyto-oxylipin mediated plant immune response to colonization and infection in the soybean- Phytophthora sojae pathosystem. FRONTIERS IN PLANT SCIENCE 2023; 14:1141823. [PMID: 37251755 PMCID: PMC10219219 DOI: 10.3389/fpls.2023.1141823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Introduction Food security is a major challenge to sustainably supply food to meet the demands of the ever-growing global population. Crop loss due to pathogens is a major concern to overcoming this global food security challenge. Soybean root and stem rot caused by Phytophthora sojae results in approximately 20B $US crop loss annually. Phyto-oxylipins are metabolites biosynthesized in the plants by oxidative transformation of polyunsaturated fatty acids through an array of diverging metabolic pathways and play an important role in plant development and defense against pathogen colonization and infection. Lipid mediated plant immunity is a very attractive target for developing long term resistance in many plants' disease pathosystem. However, little is known about the phyto-oxylipin's role in the successful strategies used by tolerant soybean cultivar to mitigate Phytophthora sojae infection. Methods We used scanning electron microscopy to observe the alterations in root morphology and a targeted lipidomics approach using high resolution accurate mass tandem mass spectrometry to assess phyto-oxylipin anabolism at 48 h, 72 h and 96 h post infection. Results and discussion We observed the presence of biogenic crystals and reinforced epidermal walls in the tolerant cultivar suggesting a mechanism for disease tolerance when compared with susceptible cultivar. Similarly, the unequivocally unique biomarkers implicated in oxylipin mediated plant immunity [10(E),12(Z)-13S-hydroxy-9(Z),11(E),15(Z)-octadecatrienoic acid, (Z)-12,13-dihydroxyoctadec-9-enoic acid, (9Z,11E)-13-Oxo-9,11-octadecadienoic acid, 15(Z)-9-oxo-octadecatrienoic acid, 10(E),12(E)-9-hydroperoxyoctadeca-10,12-dienoic acid, 12-oxophytodienoic acid and (12Z,15Z)-9, 10-dihydroxyoctadeca-12,15-dienoic acid] generated from intact oxidized lipid precursors were upregulated in tolerant soybean cultivar while downregulated in infected susceptible cultivar relative to non-inoculated controls at 48 h, 72 h and 96 h post infection by Phytophthora sojae, suggesting that these molecules may be a critical component of the defense strategies used in tolerant cultivar against Phytophthora sojae infection. Interestingly, microbial originated oxylipins, 12S-hydroperoxy-5(Z),8(Z),10(E),14(Z)-eicosatetraenoic acid and (4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoic acid were upregulated only in infected susceptible cultivar but downregulated in infected tolerant cultivar. These microbial originated oxylipins are capable of modulating plant immune response to enhance virulence. This study demonstrated novel evidence for phyto-oxylipin metabolism in soybean cultivars during pathogen colonization and infection using the Phytophthora sojae-soybean pathosystem. This evidence may have potential applications in further elucidation and resolution of the role of phyto-oxylipin anabolism in soybean tolerance to Phytophthora sojae colonization and infection.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Thu Huong Pham
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Dmitry Grapov
- Creative Data Solution (CDS), Colfax, CA, United States
| | - Muhammad Nadeem
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Linda Elizabeth Jewell
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, NL, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Raymond Thomas
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Department of Biology/Biotron Climate Change Experimental Research Centre, Western University, London, ON, Canada
| |
Collapse
|
4
|
Beccaccioli M, Pucci N, Salustri M, Scortichini M, Zaccaria M, Momeni B, Loreti S, Reverberi M, Scala V. Fungal and bacterial oxylipins are signals for intra- and inter-cellular communication within plant disease. FRONTIERS IN PLANT SCIENCE 2022; 13:823233. [PMID: 36186042 PMCID: PMC9524268 DOI: 10.3389/fpls.2022.823233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Lipids are central at various stages of host-pathogen interactions in determining virulence and modulating plant defense. Free fatty acids may act as substrates for oxidizing enzymes [e.g., lipoxygenases (LOXs) and dioxygenases (DOXs)] that synthesize oxylipins. Fatty acids and oxylipins function as modulators of several pathways in cell-to-cell communication; their structural similarity among plant, fungal, and bacterial taxa suggests potential in cross-kingdom communication. We provide a prospect of the known role of fatty acids and oxylipins in fungi and bacteria during plant-pathogen interactions. In the pathogens, oxylipin-mediated signaling pathways are crucial both in development and host infection. Here, we report on case studies suggesting that oxylipins derived from oleic, linoleic, and linolenic acids are crucial in modulating the pathogenic lifestyle in the host plant. Intriguingly, overlapping (fungi-plant/bacteria-plant) results suggest that different inter-kingdom pathosystems use similar lipid signals to reshape the lifestyle of the contenders and occasionally determine the outcome of the challenge.
Collapse
Affiliation(s)
- Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and the Analysis of Agricultural Economics (CREA), Rome, Italy
| | - Manuel Salustri
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and the Analysis of Agricultural Economics (CREA), Rome, Italy
| | - Marco Zaccaria
- Department of Biology, Boston College, Newton, MA, United States
| | - Babak Momeni
- Department of Biology, Boston College, Newton, MA, United States
| | - Stefania Loreti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and the Analysis of Agricultural Economics (CREA), Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Valeria Scala
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and the Analysis of Agricultural Economics (CREA), Rome, Italy
| |
Collapse
|
5
|
Scala V, Salustri M, Loreti S, Pucci N, Cacciotti A, Tatulli G, Scortichini M, Reverberi M. Mass Spectrometry-Based Targeted Lipidomics and Supervised Machine Learning Algorithms in Detecting Disease, Cultivar, and Treatment Biomarkers in Xylella fastidiosa subsp. pauca-Infected Olive Trees. FRONTIERS IN PLANT SCIENCE 2022; 13:833245. [PMID: 35528940 PMCID: PMC9072861 DOI: 10.3389/fpls.2022.833245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In 2013, Xylella fastidiosa (Xf) was detected for the first time in Apulia and, subsequently, recognized as the causal agent of the olive quick decline syndrome (OQDS). To contain the disease, the olive germplasm was evaluated for resistance to Xf, identifying cultivars with different susceptibility to the pathogen. Regarding this, the resistant cultivar Leccino has generally a lower bacterial titer compared with the susceptible cultivar Ogliarola salentina. Among biomolecules, lipids could have a pivotal role in the interaction of Xf with its host. In the grapevine Pierce's disease, fatty acid molecules, the diffusible signaling factors (DSFs), act as regulators of Xf lifestyle and are crucial for its virulence. Other lipid compounds derived from fatty acid oxidation, namely, oxylipins, can affect, in vitro, biofilm formation in Xf subsp. pauca (Xfp) strain De Donno, that is, the strain causing OQDS. In this study, we combined high-performance liquid chromatography-mass spectrometry-MS-based targeted lipidomics with supervised learning algorithms (random forest, support vector machine, and neural networks) to classify olive tree samples from Salento. The dataset included samples from either OQDS-positive or OQDS-negative olive trees belonging either to cultivar Ogliarola salentina or Leccino treated or not with the zinc-copper-citric acid biocomplex Dentamet®. We built classifiers using the relative differences in lipid species able to discriminate olive tree samples, namely, (1) infected and non-infected, (2) belonging to different cultivars, and (3) treated or untreated with Dentamet®. Lipid entities emerging as predictors of the thesis are free fatty acids (C16:1, C18:1, C18:2, C18:3); the LOX-derived oxylipins 9- and 13-HPOD/TrE; the DOX-derived oxylipin 10-HPOME; and diacylglyceride DAG36:4(18:1/18:3).
Collapse
Affiliation(s)
- Valeria Scala
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Manuel Salustri
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Andrea Cacciotti
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Giuseppe Tatulli
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
Scala V, Pucci N, Salustri M, Modesti V, L’Aurora A, Scortichini M, Zaccaria M, Momeni B, Reverberi M, Loreti S. Xylella fastidiosa subsp. pauca and olive produced lipids moderate the switch adhesive versus non-adhesive state and viceversa. PLoS One 2020; 15:e0233013. [PMID: 32413086 PMCID: PMC7228078 DOI: 10.1371/journal.pone.0233013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/26/2020] [Indexed: 12/14/2022] Open
Abstract
Global trade and climate change are re-shaping the distribution map of pandemic pathogens. One major emerging concern is Xylella fastidiosa, a tropical bacterium recently introduced into Europe from America. In last decades, X. fastidiosa was detected in several European countries. X. fastidiosa is an insect vector-transmitted bacterial plant pathogen associated with severe diseases in a wide range of hosts. X. fastidiosa through a tight coordination of the adherent biofilm and the planktonic states, invades the host systemically. The planktonic phase is correlated to low cell density and vessel colonization. Increase in cell density triggers a quorum sensing system based on mixture of cis 2-enoic fatty acids-diffusible signalling factors (DSF) that promote stickiness and biofilm. The lipidome profile of Olea europaea L. (cv. Ogliarola salentina) samples, collected in groves located in infected zones and uninfected zones was performed. The untargeted analysis of the lipid profiles of Olive Quick Decline Syndrome (OQDS) positive (+) and negative (-) plants showed a clustering of OQDS+ plants apart from OQDS-. The targeted lipids profile of plants OQDS+ and OQDS- identified a shortlist of 10 lipids that increase their amount in OQDS+ and X. fastidiosa positive olive trees. These lipid entities, provided to X. fastidiosa subsp. pauca pure culture, impact on the dual phase, e.g. planktonic ↔ biofilm. This study provides novel insights on OQDS lipid hallmarks and on molecules that might modulate biofilm phase in X. fastidiosa subsp. pauca.
Collapse
Affiliation(s)
- Valeria Scala
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Nicoletta Pucci
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Manuel Salustri
- Dept. of Environmental Biology, Sapienza University, Roma, Italy
| | - Vanessa Modesti
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Alessia L’Aurora
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| | - Marco Scortichini
- Council for Agricultural research and Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Roma, Italy
| | - Marco Zaccaria
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | | | - Stefania Loreti
- Council for Agricultural research and Economics (CREA), Research Centre for Plant Protection and Certification, Roma, Italy
| |
Collapse
|
7
|
Oxylipins mediate cell-to-cell communication in Pseudomonas aeruginosa. Commun Biol 2019; 2:66. [PMID: 30793044 PMCID: PMC6377657 DOI: 10.1038/s42003-019-0310-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
Oxygenated unsaturated fatty acids, known as oxylipins, are signaling molecules commonly used for cell-to-cell communication in eukaryotes. However, a role for oxylipins in mediating communication in prokaryotes has not previously been described. Bacteria mainly communicate via quorum sensing, which involves the production and detection of diverse small molecules termed autoinducers. Here we show that oleic acid-derived oxylipins produced by Pseudomonas aeruginosa function as autoinducers of a novel quorum sensing system. We found that this system controls the cell density-dependent expression of a gene subset independently of the quorum sensing systems thus far described in this bacterium. We identified a LysR-type transcriptional regulator as the primary receptor of the oxylipin signal. The discovery of this oxylipin-dependent quorum sensing system reveals that prokaryote-derived oxylipins also mediate cell-to-cell communication in bacteria. Eriel Martínez et al. report that the bacterial pathogen Pseudomonas aeruginosa can convert oleic acids into oxylipins for use in cell-cell communication. This quorum sensing system is regulated by the bacterial protein called oxylipin-dependent diol synthase regulator OdsR.
Collapse
|