1
|
Hasan M, Talukder S, Mandal AK, Tasmim ST, Parvin S, Ali Y, Sikder MH, Callaghan TJ, Soares Magalhães RJ, Islam T. Antimicrobial Resistance Profiles of Campylobacter spp. Recovered from Chicken Farms in Two Districts of Bangladesh. Foodborne Pathog Dis 2025; 22:118-130. [PMID: 38563794 DOI: 10.1089/fpd.2023.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The rapid emergence of antimicrobial resistance (AMR) in Campylobacter has reinforced its status as a foodborne pathogen of significant public health concern. Resistant Campylobacter is typically transferred to humans via the consumption of contaminated animal products, particularly poultry. The genes associated with antimicrobial resistance in Campylobacter spp. are poorly understood. To address this knowledge gap, we conducted a prevalence survey of AMR Campylobacter across 84 chicken farms in two districts of Bangladesh. Pooled cloacal swabs were collected from chickens and underwent bacteriological testing for Campylobacter spp. with PCR confirmation. Antimicrobial susceptibility was tested against 14 antibiotics by disk diffusion method, and 12 resistance genes were screened in Campylobacter-positive isolates using multiplex PCR. A total of 34 (40.5%) farms were Campylobacter-positive of which 73.5% of isolates were resistant to at least 10 antibiotics. The antimicrobial susceptibility results indicate a high level of resistance against streptomycin (97.1%), clindamycin (97.1%), ampicillin (94.1%), tetracycline (94.1%), erythromycin (91.2%), ciprofloxacin (88.2%), nalidixic acid (85.3%), and imipenem (82.4%), and comparatively a low frequency of resistance to chloramphenicol (47.1%), ceftazidime (44.1%), and colistin (35.3%). Multidrug-resistant (MDR) and extensively drug-resistant Campylobacter were identified in 97.1%, and 50% of isolates, respectively. Ten resistance genes were identified including blaTEM (in 97.1% of isolates), strA-strB (85.9%), tetA (70.6%), tetB (32.4%), qnrS (23.5%), blaCTX-M-1 (20.6%), qnrB (20.6%), blaSHV (8.8%), aadB (5.9%), and qnrA (2.9%). Our findings demonstrate that resistance to ampicillin, tetracycline, and ceftazidime in Campylobacter isolates was significantly (p ≤ 0.05) associated with the presence of blaTEM, tetA, and blaSHV genes, respectively. The high rates of AMR in Campylobacter isolates from our study are not surprising given the liberal use of antimicrobials and incomplete biosecurity provisions on farms. Of particular concern are resistance rates to those classes of antibiotics that should be reserved for human use (azithromycin, ciprofloxacin, and colistin). AMR was more prevalent in chicken farms that used multiple antibiotics, engaged in prophylactic treatment of the birds, and improperly disposed of antibiotic packages. The high prevalence of MDR in chicken-derived Campylobacter isolates from the different regions of our study reinforces the need for more prudent use of antimicrobial compounds in Bangladeshi chicken farms.
Collapse
Affiliation(s)
- Mehedi Hasan
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sudipta Talukder
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Amit Kumar Mandal
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Syeda Tanjina Tasmim
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sonia Parvin
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Yamin Ali
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Livestock Services, Dhaka, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Thomas J Callaghan
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Ricardo J Soares Magalhães
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Taohidul Islam
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
2
|
Alves VF, Tadielo LE, Pires ACMDS, Pereira MG, Bersot LDS, De Martinis ECP. Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry. Foods 2024; 13:3994. [PMID: 39766937 PMCID: PMC11675819 DOI: 10.3390/foods13243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to critically survey the recent scientific literature on microbial biofilms of importance for meat safety and quality, also pointing out the most promising methods to combat them. For this, the databases PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were surveyed in a 10-year time frame (but preferably papers less than 5 years old) using selected keywords relevant for the microbiology of meats, especially considering bacteria that are tolerant to cleaning and sanitization processes. The literature findings showed that massive DNA sequencing has deeply impacted the knowledge on the species that co-habit biofilms with important foodborne pathogens (Listeria monocytogenes, Salmonella, pathogenic Escherichia coli, and Staphylococcus aureus). It is likely that recalcitrant commensal and/or spoilage microbiota somehow protect the more fastidious organisms from harsh conditions, in addition to harboring antimicrobial resistance genes. Among the members of background microbiota, Pseudomonas, Acinetobacter, and Enterobacteriales have been commonly found on food contact and non-food contact surfaces in meat processing plants, in addition to less common genera, such as Psychrobacter, Enhydrobacter, Brevundimonas, and Rothia, among others. It has been hypothesized that these rare taxa may represent a primary layer in microbial biofilms, offering better conditions for the adhesion of otherwise poor biofilm formers, especially considering their tolerance to cold conditions and sanitizers. Taking into consideration these findings, it is not only important to target the foodborne pathogens per se in cleaning and disinfection plans but the use of multiple hurdles is also recommended to dismantle the recalcitrant structures of biofilms. In this sense, the last part of this manuscript presents an updated overview of the antibiofilm methods available, with an emphasis on eco-friendly approaches.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- Department of Animal Production and Food, State University of Santa Catarina, Lages 88040-900, Brazil;
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (A.C.M.d.S.P.); (M.G.P.)
| | | | | |
Collapse
|
3
|
Habib I, Mohamed MYI, Lakshmi GB, Al Marzooqi HM, Afifi HS, Shehata MG, Khan M, Ghazawi A, Abdalla A, Anes F. Quantitative assessment and genomic profiling of Campylobacter dynamics in poultry processing: a case study in the United Arab Emirates integrated abattoir system. Front Microbiol 2024; 15:1439424. [PMID: 39296292 PMCID: PMC11408311 DOI: 10.3389/fmicb.2024.1439424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
In the United Arab Emirates, no previous research has investigated the dynamics of the foodborne pathogen Campylobacter in broiler abattoir processing. This study conducted in one of the largest poultry producers in the UAE, following each key slaughter stage-defeathering, evisceration, and final chilling-five broiler carcasses were collected from 10 slaughter batches over a year. Additionally, one caecum was obtained from 15 chickens in each slaughter batch to evaluate the flock colonization. In total, 300 samples (150 carcasses and 150 caeca) were collected and enumerated for Campylobacter using standard methods. Campylobacter was pervasive in caecal samples from all slaughter batches, with 86% of carcasses post-defeathering and evisceration stages and 94% post-chilling tested positive for Campylobacter. Campylobacter coli predominates in 55.2% of positive samples, followed by Campylobacter jejuni in 21%, with both species co-existing in 23.8% of the samples. Campylobacter counts in caecal contents ranged from 6.7 to 8.5 log10 CFU/g, decreasing post-defeathering and evisceration to 3.5 log10 CFU/g of neck skin and further to 3.2 log10 CFU/g of neck skin post-evisceration. After chilling, 70% of carcasses exceeded 3 log10 CFU/g of neck skin. Whole-genome sequencing (WGS) of 48 isolates unveiled diverse sequence types and clusters, with isolates sharing the same clusters (less than 20 single nucleotide polymorphisms) between different farms, different flocks within the same farm, as well as in consecutive slaughter batches, indicating cross-contamination. Multiple antimicrobial resistance genes and mutations in gyrA T86I (conferring fluoroquinolone resistance) and an RNA mutation (23S r.2075; conferring macrolide resistance) were widespread, with variations between C. coli and C. jejuni. WGS results revealed that selected virulence genes (pglG, pseD, pseI, flaA, flaB, cdtA, and cdtC) were significantly present in C. jejuni compared to C. coli isolates. This study offers the first insights into Campylobacter dynamics in poultry processing in the UAE. This work provides a base for future research to explore additional contributors to Campylobacter contamination in primary production. In conclusion, effective Campylobacter management demands a comprehensive approach addressing potential contamination sources at every production and processing stage, guided by continued microbiological surveillance and genomic analysis to safeguard public health and food safety.
Collapse
Affiliation(s)
- Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed-Yousif Ibrahim Mohamed
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Glindya Bhagya Lakshmi
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hassan Mohamed Al Marzooqi
- Food Research Section, Applied Research and Capacity Building Division, Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Hanan Sobhy Afifi
- Food Research Section, Applied Research and Capacity Building Division, Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Mohamed Gamal Shehata
- Food Research Section, Applied Research and Capacity Building Division, Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTACITY), Alexandria, Egypt
| | - Mushtaq Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Abdalla
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Febin Anes
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Calland JK, Pesonen ME, Mehat J, Pascoe B, Haydon DJ, Lourenco J, Lukasiewicz B, Mourkas E, Hitchings MD, La Ragione RM, Hammond P, Wallis TS, Corander J, Sheppard SK. Genomic tailoring of autogenous poultry vaccines to reduce Campylobacter from farm to fork. NPJ Vaccines 2024; 9:105. [PMID: 38866805 PMCID: PMC11169640 DOI: 10.1038/s41541-024-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Campylobacter is a leading cause of food-borne gastroenteritis worldwide, linked to the consumption of contaminated poultry meat. Targeting this pathogen at source, vaccines for poultry can provide short-term caecal reductions in Campylobacter numbers in the chicken intestine. However, this approach is unlikely to reduce Campylobacter in the food chain or human incidence. This is likely as vaccines typically target only a subset of the high genomic strain diversity circulating among chicken flocks, and rapid evolution diminishes vaccine efficacy over time. To address this, we used a genomic approach to develop a whole-cell autogenous vaccine targeting isolates harbouring genes linked to survival outside of the host. We hyper-immunised a whole major UK breeder farm to passively target offspring colonisation using maternally-derived antibody. Monitoring progeny, broiler flocks revealed a near-complete shift in the post-vaccination Campylobacter population with an ~50% reduction in isolates harbouring extra-intestinal survival genes and a significant reduction of Campylobacter cells surviving on the surface of meat. Based on these findings, we developed a logistic regression model that predicted that vaccine efficacy could be extended to target 65% of a population of clinically relevant strains. Immuno-manipulation of poultry microbiomes towards less harmful commensal isolates by competitive exclusion, has major potential for reducing pathogens in the food production chain.
Collapse
Affiliation(s)
- Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway.
| | - Maiju E Pesonen
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Jai Mehat
- School of Biosciences, University of Surrey, Surrey, UK
| | - Ben Pascoe
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - David J Haydon
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Berkshire, UK
| | - Jose Lourenco
- Faculty of Medicine, Biomedical Research Centre, Universidade Católica Portuguesa, Lisbon, Portugal
| | | | - Evangelos Mourkas
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK
| | | | - Roberto M La Ragione
- School of Biosciences, University of Surrey, Surrey, UK
- School of Veterinary Medicine, University of Surrey, Surrey, UK
| | | | - Timothy S Wallis
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Berkshire, UK
| | - Jukka Corander
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Jeong J, Lee JY, Moon JS, Kang MS, Kang SI, Lee OM, Lee SH, Kwon YK, Chae M, Cho S. Virulence Genes, Antimicrobial Resistance, and Genotypes of Campylobacter jejuni Isolated from Chicken Slaughterhouses in South Korea. Foodborne Pathog Dis 2024. [PMID: 38608218 DOI: 10.1089/fpd.2023.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Campylobacter jejuni represents one of the leading causes of bacterial gastroenteritis in humans and is primarily linked to chicken meat contamination. In the present study, we analyzed the virulence and survival genes, antimicrobial resistance, and the clonal distribution of 50 C. jejuni isolates obtained from various sources in 14 chicken slaughterhouses across 8 provinces in South Korea from 2019 to 2022. Furthermore, we determined their genetic relatedness to human-derived isolates registered in PubMLST using multilocus sequence typing (MLST). All isolates harbored various virulence and survival genes (flhA, cadF, cdtA, cdtC, cmeA, and sodB) out of 17 tested genes, as confirmed via polymerase chain reaction analysis. Adherence factor gene virB11 was not detected in any isolate. All isolates harbored 12 or more virulence and survival genes. Antimicrobial susceptibility testing indicated that ciprofloxacin resistance was the most prevalent (84.0%), followed by nalidixic acid (82.0%) and tetracycline (52.0%) resistance. MLST analysis of the isolates revealed 18 sequence types (STs), including four new ones. Overlapping STs between chicken slaughterhouse and human-derived isolates included ST42, ST45, ST50, ST137, ST354, and ST464. Our study identified 11 clonal complexes (CCs), with CC-21 being the most prevalent in both human and chicken slaughterhouse-derived isolates. This study provides comprehensive insights into recent C. jejuni isolates from chicken slaughterhouses, including data on quinolone resistance and virulence factors. The MLST-based genetic relatedness between isolates from humans and chicken slaughterhouses in this study suggests the potential of C. jejuni transmission from chickens to humans through the food chain. This study suggests the need for improved management practices in chicken slaughterhouses to reduce the transmission of chicken slaughterhouse-derived C. jejuni to humans.
Collapse
Affiliation(s)
- Jiyeon Jeong
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
- Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Ji-Youn Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Jin-San Moon
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Min-Su Kang
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Sung-Il Kang
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - O-Mi Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - So-Hee Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Yong-Kuk Kwon
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Myeongju Chae
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Seongbeom Cho
- Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Zhang X, Tang M, Zhou Q, Lu J, Zhang H, Tang X, Ma L, Zhang J, Chen D, Gao Y. A broad host phage, CP6, for combating multidrug-resistant Campylobacter prevalent in poultry meat. Poult Sci 2024; 103:103548. [PMID: 38442560 DOI: 10.1016/j.psj.2024.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Campylobacter is a major cause of bacterial foodborne diarrhea worldwide. Consumption of raw or undercooked chicken meat contaminated with Campylobacter is the most common causative agent of human infections. Given the high prevalence of contamination in poultry meat and the recent rise of multi-drug-resistant (MDR) Campylobacter strains, an effective intervention method of reducing bird colonization is needed. In this study, the Campylobacter-specific lytic phage CP6 was isolated from chicken feces. Phage CP6 exhibited a broad host range against different MDR Campylobacter isolates (97.4% of strains were infected). Some biological characteristics were observed, such as a good pH (3-9) stability and moderate temperature tolerance (<50 ℃). The complete genome sequence revealed a linear double-stranded DNA (178,350 bp, group II Campylobacter phage) with 27.51% GC content, including 209 predicted open reading frames, among which only 54 were annotated with known functions. Phylogenetic analysis of the phage major capsid protein demonstrated that phage CP6 was closely related to Campylobacter phage CPt10, CP21, CP20, IBB35, and CP220. CP6 phage exerted good antimicrobial effects on MDR Campylobacter in vitro culture and reduced CFUs of the host cells by up to 1-log compared with the control in artificially contaminated chicken breast meat. Our findings suggested the potential of CP6 phage as a promising antimicrobial agent for combating MDR Campylobacter in food processing.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Qian Zhou
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Junxian Lu
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xiujun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Lina Ma
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Jing Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Dawei Chen
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Yushi Gao
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
7
|
El-Saadony MT, Saad AM, Yang T, Salem HM, Korma SA, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Selim S, Al Jaouni SK, Zaghloul RA, Abd El-Hack ME, El-Tarabily KA, Ibrahim SA. Avian campylobacteriosis, prevalence, sources, hazards, antibiotic resistance, poultry meat contamination, and control measures: a comprehensive review. Poult Sci 2023; 102:102786. [PMID: 37454641 PMCID: PMC10371856 DOI: 10.1016/j.psj.2023.102786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023] Open
Abstract
Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia, 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, 27411-1064
| |
Collapse
|
8
|
Tang B, Zheng X, Lin J, Wu J, Lin R, Jiang H, Ji X, Yang H, Shen Z, Xia F. Prevalence of the phenicol resistance gene fexA in Campylobacter isolated from the poultry supply chain. Int J Food Microbiol 2022; 381:109912. [PMID: 36081243 DOI: 10.1016/j.ijfoodmicro.2022.109912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/31/2022]
Abstract
Florfenicol, an animal-specific broad-spectrum antibiotic, has been widely used in livestock and poultry breeding, which leads to the high antimicrobial resistance (AMR) of Campylobacter in food animals. Recently, a new florfenicol resistance gene, fexA, often located on various multidrug resistance genomic islands (MDRGIs) and confers resistance to various antimicrobial agents, was characterized in Campylobacter. However, the prevalence and genetic environments of fexA and its associated MDRGIs in Campylobacter in the poultry supply chain need further characterization. Here, a total of 111 (15.48 %) Campylobacter isolates (63 C. jejuni, 40 C. coli, 8 C. lari) were obtained from 717 samples from farms, slaughterhouses, and supermarkets. Both phenotypic and genotypic analyses indicated that the AMR of C. coli was significantly higher than that of C. jejuni. PCR amplification and whole genome sequencing showed that the fexA gene was present in 26 out of 35 florfenicol-resistant Campylobacter isolates. This gene was located in the tet(L)-fexA-tet(O) MDRGI. The fexA-harboring isolates detected in the above sources could be clustered into the same branch, indicating that they may have the same ancestor. In addition, the erm(B) gene was identified in 17 Campylobacter isolates, and the A2075G point mutation in the 23S rRNA gene occurred in 26 isolates, emphasizing the high resistance of Campylobacter to macrolides. In summary, these results indicate that fexA within the MDRGI of Campylobacter can be transmitted through bacteria in the animal-based food supply chain, and it is necessary to strengthen the monitoring of the prevalence and spread of fexA in foodborne Campylobacter spp.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China; College of Food and Bioengineering, Shaanxi University of Science and Technology, Xian, Shaanxi, China
| | - Jiahui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Rumeng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhangqi Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Fei Xia
- College of Food and Bioengineering, Shaanxi University of Science and Technology, Xian, Shaanxi, China.
| |
Collapse
|
9
|
Virulence Profiling, Multidrug Resistance and Molecular Mechanisms of Campylobacter Strains from Chicken Carcasses in Tunisia. Antibiotics (Basel) 2022; 11:antibiotics11070830. [PMID: 35884085 PMCID: PMC9312241 DOI: 10.3390/antibiotics11070830] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance in foodborne pathogens is an emergent global health concern. The objectives of this study were to assess antimicrobial resistance (AMR) in Campylobacter isolates from chicken carcasses and to investigate the AMR molecular mechanisms as well as the presence of virulence determinants. The study was performed on 257 samples collected from abattoirs and retail shops in northeastern Tunisia. Forty-eight Campylobacter isolates were recovered and identified as C. jejuni (n = 33) and C. coli (n = 15). Antibiotic resistance was tested against eight antibiotics and high resistance rates were observed against tetracycline (100%), erythromycin (97.9%), ciprofloxacin (73%), nalidixic acid (85.4%), ampicillin (83.3%), amoxicillin/clavulanic acid (22.9%), chloramphenicol (75%), and gentamicin (27.1%). All isolates were multidrug-resistant, and 22 resistance patterns were found. All isolates were screened for AMR genes (tet(O), tet(A), tet(B), tet(L), cmeB, ermB, blaOXA-61, and aphA-3), and for point mutations in gyrA (C257T substitution) and 23SrRNA (A2075G/A2074C) genes. All screened AMR genes, as well as the C257T and the A2075G mutations, were detected. The virulence genotypes were also determined, and all isolates carried the motility (flaA) and invasion (cadF) genes. Most of them also harbored the cdtA, cdtB, and cdtC genes, encoding the Campylobacter toxin. The screening of the cgtB and the wlaN genes, involved in Guillain-Barré Syndrome expression, revealed the presence of the cgtB in 21.2% of C. jejuni strains, whereas none of them carried the wlaN gene. Our findings highlight the emergence of Campylobacter strains simultaneously harboring several virulence and AMR determinants, which emphasizes the risk of transmission of MDR strains to humans via the food chain. Hence, controlling the dissemination of foodborne pathogens “from the farm to the fork” as well as restricting the use of antimicrobials in husbandry are mandatory to prevent the risk for consumers and to mitigate the dissemination of MDR pathogens.
Collapse
|
10
|
Bacterial community identification in poultry carcasses using high-throughput next generation sequencing. Int J Food Microbiol 2022; 364:109533. [DOI: 10.1016/j.ijfoodmicro.2022.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
|
11
|
Perdoncini G, Sierra Arguello YM, Moreira Lima L, Quedi Furian T, Apellanis Borges K, Beatriz Rodrigues L, Ruschel Dos Santos L, Borsoi A, Werlang Isolan L, Gomes MJP, Pippi Salle CT, de Souza Moraes HL, Pinheiro do Nascimento V. Detection and Quantification of Campylobacter in Poultry Slaughterhouses Using Conventional Microbiological Technique, Most Probable Number, and Real-Time PCR. Foodborne Pathog Dis 2021; 19:143-150. [PMID: 34898274 DOI: 10.1089/fpd.2021.0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacteriosis is one of the most common bacteria causing human gastroenteritis. Poultry is a major reservoir of Campylobacter spp. as well as the main source of transmission. Due to the increased occurrence of campylobacteriosis, poultry slaughterhouses are under pressure to deliver carcasses with low contamination. However, a few studies have been carried out to evaluate Campylobacter contamination of broiler carcasses in Brazilian slaughter lines. Therefore, in this study, we aimed at detecting and quantifying the thermotolerant Campylobacter spp. at different stages of the poultry slaughtering process. The samples were collected from 12 points in three slaughterhouses in southern Brazil, at an interval of 12 months, and were tested for Campylobacter spp. by conventional microbiological technique, the most probable number, and real-time PCR. A total of 432 samples were analyzed. The majority of strains belonged to Campylobacter jejuni (92%), and the flock positivity among the three techniques was similar in most cases. Campylobacter was detected in all slaughtering stages. Although contamination has remained similar (p > 0.05) throughout almost all the slaughter process, evisceration seemed to be an important source of contamination. Our results reinforce the idea that the final carcass quality after the slaughtering process is directly influenced by the level of contamination of the broiler flocks on arrival at the processing plant.
Collapse
Affiliation(s)
- Gustavo Perdoncini
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yuli Melisa Sierra Arguello
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo Moreira Lima
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Quedi Furian
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karen Apellanis Borges
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Beatriz Rodrigues
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Brazil
| | | | - Anderlise Borsoi
- Faculdade de Medicina Veterinária, Universidade Tuiuti do Paraná, Curitiba, Brazil
| | - Leonardo Werlang Isolan
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Inspeção de Produtos de Origem Animal, Ministério da Agricultura, Pecuária e Abastecimento, Porto Alegre, Brazil
| | - Marcos José Pereira Gomes
- Departamento de Medicina Veterinária Preventiva, Laboratório de Bacteriologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Tadeu Pippi Salle
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Hamilton Luiz de Souza Moraes
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vladimir Pinheiro do Nascimento
- Departamento de Medicina Animal, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Shakir ZM, Alhatami AO, Ismail Khudhair Y, Muhsen Abdulwahab H. Antibiotic Resistance Profile and Multiple Antibiotic Resistance Index of Campylobacter Species Isolated from Poultry. ARCHIVES OF RAZI INSTITUTE 2021; 76:1677-1686. [PMID: 35546994 PMCID: PMC9083853 DOI: 10.22092/ari.2021.356400.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/25/2021] [Indexed: 06/15/2023]
Abstract
Campylobacter is a major public health problem, leading to foodborne diarrhea in the world. The current study aimed to isolate Campylobacter in different sources of poultry and determine antimicrobial susceptibility. A total of 150 fecal and 29 cloacal swabs were obtained from poultry farms (84 cloacal swabs) and live bird markets (LBMs), respectively, and 37 cecal swabs were also acquired from a local slaughterhouse located in the middle Euphrates region. Campylobacter Species (spp.) was first isolated and characterized by conventional bacteriological methods. Secondly, the antimicrobial susceptibility of isolates was investigated by disc diffusion method. The overall prevalence of Campylobacter spp. isolated from fecal cloacal and cecal poultry samples was 24% (36 out of 150). All strains were resistant to Nalidixic acid and Ciprofloxacin (100%), with high resistance to Tetracycline (88.8%), Ampicillin (83.3%), Sulpha/Trimethoprim (80.5%), Erythromycin (50%), and Ceftriaxone (50%), but less resistant to Gentamicin (30.5%), Amoxi-Clav (27.7%), and Chloramphenicol (22.2%). The majority of isolates (97.2%) scored a multiple antibiotic resistance (MAR) index of 0.3 or more, and 35 (97.2%) isolates were resistant to three or more antibiotic classes. Particularly, 61.1% of the isolates were multidrug resistance (MDR), 36.1% of the isolates were extensively drug resistant, and 2.8% of the isolates were Pan drug resistant. Moreover, the current study detected 24 multiple resistance patterns from 36 isolates of Campylobacter spp., and most of the isolates (27 out of 36) displayed an important route of resistance to Nalidixic acid, Ciprofloxacin, and Tetracycline. Based on the results, increased resistance rates to commonly used antibiotics in Campylobacter were recovered from poultry farms, LBMs, and local slaughterhouses. The majority of strains were MDR to commonly used antimicrobials with elevated MAR indices, requiring implementation of a national strategy to improve husbandry practice and the effective use of antibacterial agents, alternatives, and vaccines.
Collapse
Affiliation(s)
- Z M Shakir
- Heath Department, National Center for Occupational Health and Safety, AL-Najaf Governorate, Iraq
| | - A O Alhatami
- Department of Public Health, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | - Y Ismail Khudhair
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - H Muhsen Abdulwahab
- Department of Pathology and Poultry Diseases, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| |
Collapse
|
13
|
Dogan OB, Aditya A, Ortuzar J, Clarke J, Wang B. A systematic review and meta-analysis of the efficacy of processing stages and interventions for controlling Campylobacter contamination during broiler chicken processing. Compr Rev Food Sci Food Saf 2021; 21:227-271. [PMID: 34730272 DOI: 10.1111/1541-4337.12860] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Systematic review and meta-analysis were conducted to quantify the effects of processing stages and interventions on the prevalence and concentration of Campylobacter on broiler carcasses. To comprehensively capture relevant evidence, six databases were searched using the keywords "Campylobacter" and "broiler chicken." The literature search yielded 10,450 unique citations, and after applying predetermined inclusion and exclusion criteria, 72 and 53 relevant citations were included in meta-analyses for processing stages and interventions, respectively. As the two primary outcomes, log reduction and prevalence changes were estimated for each stage or intervention using a random-effects meta-analysis approach whenever possible. The outcome-level quality assessment was conducted following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The analysis revealed that scalding and chilling majorly reduces the prevalence and concentration of Campylobacter. Immersion chilling reduces the concentration regardless of chemical additives, but its effect on prevalence is not conclusive. The effects of carcass washing applications remain uncertain due to the inconsistency and imprecision of both outcomes. Defeathering and evisceration were identified as stages that can increase both prevalence and concentration. Both chemical and physical processing interventions provide limited efficacy in concentration and prevalence reduction. Major limitations of the review were inconsistency and imprecision at the outcome level and reporting issues and data gaps at the study level. The results are expected to inform quantitative microbial risk assessment model development and support evidence-based decision-making.
Collapse
Affiliation(s)
- Onay B Dogan
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Anand Aditya
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Juan Ortuzar
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jennifer Clarke
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Bing Wang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
14
|
Suman Kumar M, Ramees TP, Dhanze H, Gupta S, Dubal ZB, Kumar A. Occurrence and antimicrobial resistance of Campylobacter isolates from broiler chicken and slaughter house environment in India. Anim Biotechnol 2021; 34:199-207. [PMID: 34352178 DOI: 10.1080/10495398.2021.1953514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Campylobacteriosis is among the most frequently reported foodborne zoonoses. A total of 848 samples were screened for Campylobacter spp. and occurrence was found to be 8.7%, 2.3% and 1.65% in broiler cecum samples, chicken meat samples and slaughter house environment swabs, respectively. High level of antimicrobial resistance was found against tetracycline (64.1%), doxycycline (54.4%), ampicillin (46.6%), nalidixic acid (42.7%), kanamycin (35.9%), and ciprofloxacin (33.33%). Resistance to co-amoxiclav (19.4%) and erythromycin (21.4%) was less common. The MAR index of the isolates was in the range of 0.11-0.78. Multi-drug resistance was observed in 54.4% of the isolates, with 53.2% C. jejuni and 55.3% C. coli isolates found resistant against three or more classes of antimicrobials. Presence of mutations in gyrA and 23S rRNA genes was investigated, which revealed that all the fluoroquinolone resistant isolates possessed Thr-86-Ile point mutation, whereas only 68% of erythromycin resistant isolates had A2075G mutation. The tetO gene was present in 91.7% tetracycline resistant isolates and blaOXA-61 gene was detected in 97.9% of the ampicillin resistant isolates. The occurrence of antimicrobial resistant Campylobacter spp. in broiler chicken samples and slaughter house settings is a public health risk and calls for judicial use of antimicrobials.
Collapse
Affiliation(s)
- M Suman Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - T P Ramees
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - H Dhanze
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - S Gupta
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Z B Dubal
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - A Kumar
- Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
15
|
Tangkonda E, Kubo M, Sekiguchi S, Shinki T, Sasaki S, Yamada K, Taniguchi T, Vetchapitak T, Misawa N. Work-related increases in titer of Campylobacter jejuni antibody among workers at a chicken processing plant in Miyazaki prefecture, Japan, independent of individual ingestion of edible raw chicken meat. J Vet Med Sci 2021; 83:1306-1314. [PMID: 34219072 PMCID: PMC8437720 DOI: 10.1292/jvms.21-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Workers in poultry abattoirs may be frequently exposed to Campylobacter jejuni, which is a leading cause of bacterial food poisoning in Japan. The present study was conducted to measure the titers of IgG and IgA antibodies against C. jejuni among 104 female workers in a chicken processing plant in Miyazaki prefecture, Japan. Information regarding habitual ingestion of raw chicken meat and potential occupational risk factors was collected using a questionnaire. Acid extracts of four C. jejuni strains representing the genotypes most dominant in Miyazaki were used as antigens. The levels of both immunoglobulins measured by ELISA were not correlated with ingestion of edible raw chicken meat, the amount consumed in one sitting, or its frequency. Although age was correlated with antibody levels, the length of employment was not. Furthermore, the IgG and IgA levels in workers at the evisceration step were significantly higher than those at other locations in the plant. To identify the bacterial proteins recognized by the workers' IgG and IgA antibodies, Western blotting followed by LC/MS was conducted. Flagellin was identified as the common protein recognized in the sera of workers for whom ELISA demonstrated both the highest and lowest antibody levels. We concluded that the titers of IgG and IgA against C. jejuni in workers at the processing plant had been increased by occupational exposure to Campylobacter, regardless of raw chicken meat ingestion.
Collapse
Affiliation(s)
- Elisabet Tangkonda
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-Kiyotake-cho, Miyazaki 889-1692, Japan.,Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Meiko Kubo
- Miyakonojo Meat Inspection Center, 38-1 Hirae-cho, Miyakonojo-shi, Miyazaki 885-0021, Japan
| | - Satoshi Sekiguchi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.,Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Taisuke Shinki
- Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Satomi Sasaki
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Kentaro Yamada
- Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takako Taniguchi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Torrung Vetchapitak
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Naoaki Misawa
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kihara-Kiyotake-cho, Miyazaki 889-1692, Japan.,Laboratory of Veterinary Public Health, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
16
|
Bai J, Chen Z, Luo K, Zeng F, Qu X, Zhang H, Chen K, Lin Q, He H, Liao M, Zhang J. Highly Prevalent Multidrug-Resistant Campylobacter spp. Isolated From a Yellow-Feathered Broiler Slaughterhouse in South China. Front Microbiol 2021; 12:682741. [PMID: 34220768 PMCID: PMC8242590 DOI: 10.3389/fmicb.2021.682741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to investigate the prevalence, antimicrobial resistance, virulence genes, and genetic diversity of Campylobacter spp. along the yellow-feathered broiler slaughtering line in Southern China from December 2018 to June 2019. A total of 157 Campylobacter spp. isolates were identified from 1,102 samples (including 53.6% (75/140) of live chicken anal swab samples, 27.5% (44/160) of defeathering samples, 18.1% (29/160) of evisceration samples, 2.1% (3/140) of washing samples, 1.4% (2/140) of chilling samples, and 1.1% (4/362) of environmental samples). The prevalence of Campylobacter spp. was 14.2%, including 43.9% Campylobacter jejuni, 53.5% Campylobacter coli, and 2.5% other Campylobacter species. The highest antimicrobial resistance rate was found to be against sulfamethoxazole (138/157, 87.9%), and 90.4% (142/157) of the isolates were multidrug resistant (MDR). Examination of resistance-related genes revealed the double base mutated Thr-86-Ile, which informed ACA-TTA, with an Arg-79-Lys substitution in gyrA. Eleven virulence-associated genes (cadF, cdtA, cdtB, ciaB, flaA, imaA, dnaJ, plaA, virB11, racR, and cdtC) were also detected by a polymerase chain reaction (PCR) analysis, and cadF (81.5%) was the most prevalent. Based on an analysis of pulsed-field gel electrophoresis (PFGE) results, we found that Campylobacter spp. could be cross-contaminated throughout the entire slaughtering line. These results show that it is imperative to study the Campylobacter spp. from the yellow-feathered broiler along the slaughtering line in China to develop preventative and treatment measures for the poultry industry, as well as food safety and public health.
Collapse
Affiliation(s)
- Jie Bai
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhengquan Chen
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fanliang Zeng
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxia Zhang
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaifeng Chen
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qijie Lin
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haishan He
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianmin Zhang
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Wang J, Wang Z, Zhang J, Ding Y, Ma Z, Jiang F, Nie X, Tang S, Chen M, Wu S, Zeng H, Lei T, Yang X, Zhang S, Wu Q. Prevalence, antibiotic susceptibility and genetic diversity of Campylobacter jejuni isolated from retail food in China. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Syarifah IK, Latif H, Basri C, Rahayu P. Identification and differentiation of Campylobacter isolated from chicken meat using real-time polymerase chain reaction and high resolution melting analysis of hipO and glyA genes. Vet World 2020; 13:1875-1883. [PMID: 33132600 PMCID: PMC7566261 DOI: 10.14202/vetworld.2020.1875-1883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Background and Aim: Campylobacter species have been recognized as the most frequently identified bacterial cause of human gastroenteritis. The aims of this study were to identify Campylobacter jejuni and Campylobacter coli species isolated from chicken meat and to analyze the differences in the melting curve patterns of both species. Materials and Methods: A total of 105 chicken meat samples collected from slaughterhouses and retailers in six provinces in Indonesia were examined for the isolation and identification of Campylobacter spp. A total of 56 positive isolates of Campylobacter spp. were analyzed using the quantitative real-time polymerase chain reaction and high resolution melting method. Results: The prevalence of Campylobacter spp. in chicken meat was found to be 61.9%. Regarding the identification, 23 isolates (41.07%) were C. jejuni, 22 (39.29%) were C. coli, six (10.71%) were a mix between C. jejuni and C. coli, and five isolates (8.93%) were Campylobacter spp. All the C. jejuni and C. coli isolates produced varied melting curve patterns. Conclusion: The high prevalence of C. jejuni and C. coli in chicken meat in Indonesia indicates a high risk of the incidence of campylobacteriosis in humans.
Collapse
Affiliation(s)
- Ika Kartika Syarifah
- Veterinary Public Health Study Program, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia.,Quality Control Laboratory and Certification of Animal Products, Bogor, Indonesia
| | - Hadri Latif
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Chaerul Basri
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Puji Rahayu
- Quality Control Laboratory and Certification of Animal Products, Bogor, Indonesia
| |
Collapse
|
19
|
Rivera-Mendoza D, Martínez-Flores I, Santamaría RI, Lozano L, Bustamante VH, Pérez-Morales D. Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. Front Microbiol 2020; 11:513070. [PMID: 33042043 PMCID: PMC7518152 DOI: 10.3389/fmicb.2020.513070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
The genus Campylobacter groups 32 Gram-negative bacteria species, several being zoonotic pathogens and a major cause of human gastroenteritis worldwide. Antibiotic resistant Campylobacter is considered by the World Health Organization as a high priority pathogen for research and development of new antibiotics. Genetic elements related to antibiotic resistance in the classical C. coli and C. jejuni species, which infect humans and livestock, have been analyzed in numerous studies, mainly focused on local geographical areas. However, the presence of these resistance determinants in other Campylobacter species, as well as in C. jejuni and C. coli strains distributed globally, remains poorly studied. In this work, we analyzed the occurrence and distribution of antibiotic resistance factors in 237 Campylobacter closed genomes available in NCBI, obtained from isolates collected worldwide, in different dates, from distinct hosts and comprising 22 Campylobacter species. Our data revealed 18 distinct genetic determinants, genes or point mutations in housekeeping genes, associated with resistance to antibiotics from aminoglycosides, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols or tetracyclines classes, which are differentially distributed among the Campylobacter species tested, on chromosomes or plasmids. Three resistance determinants, the blaOXA–493 and blaOXA–576 genes, putatively related to β-lactams resistance, as well as the lnu(AN2) gene, putatively related to lincosamides resistance, had not been reported in Campylobacter; thus, they represent novel determinants for antibiotic resistance in Campylobacter spp., which expands the insight on the Campylobacter resistome. Interestingly, we found that some of the genetic determinants associated with antibiotic resistance are Campylobacter species-specific; e.g., the blaOXA–493 gene and the T86V mutation in gyrA were found only in the C. lari group, whereas genes associated with aminoglycosides resistance were found only in C. jejuni and C. coli. Additional analyses revealed how are distributed the resistance and multidrug resistance Campylobacter genotypes assessed, with respect to hosts, geographical locations, and collection dates. Thus, our findings further expand the knowledge on the factors that can determine or favor the antibiotic resistance in Campylobacter species distributed globally, which can be useful to choose a suitable antibiotic treatment to control the zoonotic infections by these bacteria.
Collapse
Affiliation(s)
- Daniel Rivera-Mendoza
- Programa de Maestría en Biotecnología, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Irma Martínez-Flores
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Rosa I Santamaría
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Deyanira Pérez-Morales
- CONACYT-Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
20
|
Zhang XY, Zhou Q, Tang MJ, Pu JH, Fan YF, Lu JX, Huang JL, Gao YS. Expression of the Campylobacter jejuni FliD protein and its reaction to chicken sera. FEMS Microbiol Lett 2020; 367:5870658. [PMID: 32658265 DOI: 10.1093/femsle/fnaa115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 11/14/2022] Open
Abstract
Campylobacter is a leading causative pathogen of acute bacterial gastroenteritis among humans. Contaminated chicken products are regarded as major sources of human infection. The flagellar capping protein (FliD), which plays important roles in colonization and adhesion to the mucosal surface of chicken ceca, is conserved among Campylobacter jejuni strains. In this study, the recombinant C. jejuni FliD protein was expressed, purified and used as a coated protein to examine the prevalence of C. jejuni antibodies in chickens. The anti-FliD antibody was prevalent among chicken serum samples taken from different farms in the diverse regions of Jiangsu province by using enzyme-linked immunosorbent assay. The Campylobacter antibody was present in culture-negative chickens. No strong dose-response relationships were observed between serum FliD antibody levels and Campylobacter cultural status. These results provide a basis for further evaluating FliD as a vaccine candidate for broiler chickens or for examining host-C. jejuni interactions, with implications for improving food safety.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou 225125, China
| | - Qian Zhou
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou 225125, China
| | - Meng-Jun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou 225125, China
| | - Jun-Hua Pu
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou 225125, China
| | - Yan-Feng Fan
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou 225125, China
| | - Jun-Xian Lu
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou 225125, China
| | - Jin-Lin Huang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225003, China
| | - Yu-Shi Gao
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou 225125, China
| |
Collapse
|
21
|
Tang Y, Jiang Q, Tang H, Wang Z, Yin Y, Ren F, Kong L, Jiao X, Huang J. Characterization and Prevalence of Campylobacter spp. From Broiler Chicken Rearing Period to the Slaughtering Process in Eastern China. Front Vet Sci 2020; 7:227. [PMID: 32426383 PMCID: PMC7203416 DOI: 10.3389/fvets.2020.00227] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Campylobacter is one of the most important foodborne pathogens worldwide, and poultry is regarded as the main reservoir of Campylobacter. The contamination of Campylobacter in broiler chickens at the farm level is closely related to the transmission of Campylobacter in the poultry production chain. This study identified 464 Campylobacter isolates from 1,534 samples from broiler rearing period and slaughtering process including 233 Campylobacter jejuni isolates and 231 Campylobacter coli isolates. We have observed a dynamic distribution of Campylobacter during broiler chicken production, that 66.3% of Campylobacter isolates were C. jejuni during broiler rearing period, while C. coli occupied 60.4% of Campylobacter isolates during the broiler slaughtering process. A tag-label method allowed us to track the dynamic of Campylobacter in each broiler chicken from 31-day age at rearing to the partition step in the slaughterhouse. At the 31-day during rearing, 150 broiler chicken were labeled, and was tracked for Campylobacter positive from rearing period to slaughtering process. Among the labeled broiler, 11 of the tracking broiler samples were able to detect Campylobacter from rearing period to slaughtering. All Campylobacter isolates from the 11 tracking samples were sequenced and analyzed. C. jejuni isolates were divided into four STs and C. coli isolates were divided into six STs. Isolates with identical core genome were observed from the same tag-labeled samples at different stages indicating a vertical transmission of Campylobacter in the early broiler meat production. Meanwhile, the core genome analysis elucidated the cross-contamination of Campylobacter during the rearing period and the slaughtering process. The virulotyping analysis revealed that all C. jejuni isolates shared the same virulotypes, while C. coli isolates were divided into three different virulotypes. The antimicrobial resistance gene analysis demonstrated that all Campylobacter isolates contained at least two antibiotic resistance genes (ARGs), and the ARG profiles were well-corresponding to each ST type. Our study observed a high prevalence of Campylobacter during the early chicken meat production, and further studies will be needed to investigate the diversity and transmission of Campylobacter in the poultry production chain.
Collapse
Affiliation(s)
- Yuanyue Tang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Qidong Jiang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Haiyan Tang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China
| | - Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Yi Yin
- Lianshui Animal Husbandry and Veterinary Station, Lianyungang, China
| | - Fangzhe Ren
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Linghua Kong
- Department of Quality and Safety Control, Heyi Food Co. Ltd., Zaozhuang, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Jiangsu, China
| |
Collapse
|
22
|
Li Y, Gu Y, Lv J, Liang H, Zhang J, Zhang S, He M, Wang Y, Ma H, French N, Zhang J, Zhang M. Laboratory Study on the Gastroenteritis Outbreak Caused by a Multidrug-Resistant Campylobacter coli in China. Foodborne Pathog Dis 2019; 17:187-193. [PMID: 31829730 DOI: 10.1089/fpd.2019.2681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Three severe acute gastroenteritis patients were identified within a 5-h period in a sentinel hospital enrolled in the foodborne pathogen surveillance project in Beijing. All patients had high fever (over 38.5°C), diarrhea, abdominal pain, vomiting, and headache. Ten grams of fresh patient stool sample and 25 g of six suspected foods were collected for real-time PCR screening for 10 major pathogens. Bacterial isolation was performed. Pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and antibiotic susceptibility tests were conducted for all the isolates. Whole-genome sequences of the three Campylobacter coli isolates were compared using whole-genome MLST. All stool samples were positive for C. coli, as revealed by PCR. Eleven of the C. coli isolates had the same PFGE and ST type. All isolates were resistant to nalidixic acid, ciprofloxacin, streptomycin, and tetracycline, consistent with the findings of the in silico antibiotic resistance gene profiling. Most coding sequences (99%, 1736/1739) were identical among the three sequenced isolates, except for three frameshift-mutated genes caused by the simple sequence repeats (poly-Gs). This was likely a single-source outbreak caused by a group of highly clonal C. coli. This was the first outbreak of severe gastroenteritis caused by C. coli in China.
Collapse
Affiliation(s)
- Ying Li
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Yixin Gu
- State Key Laboratory Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinchang Lv
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Hao Liang
- State Key Laboratory Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Zhang
- New Zealand Food Safety Science & Research Centre, Massey University, Palmerston North, New Zealand
| | - Shuang Zhang
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Mu He
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Wang
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Hongmei Ma
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Nigel French
- New Zealand Food Safety Science & Research Centre, Massey University, Palmerston North, New Zealand
| | - Jianzhong Zhang
- State Key Laboratory Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maojun Zhang
- State Key Laboratory Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
23
|
Mohammed AN, Abdel Aziz SAA. The prevalence of Campylobacter species in broiler flocks and their environment: assessing the efficiency of chitosan/zinc oxide nanocomposite for adopting control strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30177-30187. [PMID: 31422531 DOI: 10.1007/s11356-019-06030-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
There is a growing trend to implement biosecurity measures in small commercial broiler flocks and trying to replace ineffective antimicrobial with alternative materials to interevent a strategy for the control of Campylobacter bacteria in these farms. This study was designed to determine the prevalence rate of Campylobacter spp. in broiler flocks and their environment. Thereafter, assess the efficiency of chitosan, zinc oxide nanoparticles (ZnO NPs), and chitosan/ZnO NPs composite against Campylobacter strains to adopt a novel control strategy based on the ability to use those nanocomposites. A total of 220 samples were collected from broiler flocks, their environment, and farm attendants that direct contact with birds. All samples were subjected to microbiological investigation for isolation, then molecular identification of bacteria using PCR. ZnO NPs and chitosan/ZnO NPs composite were synthesized then characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectrum (FT-IR), and X-ray diffraction (X-RD). The efficiency of testing compounds was examined against 30 strains of Campylobacter coli (C. coli) to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The highest percentages of C. coli were isolated from the manure storage area, and broiler litter followed by flies, and feeders (66.7, 53.3, 40.0, and 33.3%, respectively). Both chitosan/ZnO NPs and ZnO NPs at a concentration of 0.5 μg/mL and 1.5 μg/mL, respectively showed complete efficiency (100%) against C. coli compared with chitosan compound. In conclusion, manure storage area and broiler litter represented the main reservoir of Campylobacter bacterial contaminant followed by flies in broiler poultry farms. Chitosan/ZnO NPs composite can be used in any biosecurity program of poultry farms as an alternative to ineffective antimicrobial agents.
Collapse
Affiliation(s)
- Asmaa Nady Mohammed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Sahar Abdel Aleem Abdel Aziz
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
24
|
Mohakud NK, Patra SD, Kumar S, Sahu PS, Misra N, Shrivastava AK. Detection and molecular typing of campylobacter isolates from human and animal faeces in coastal belt of Odisha, India. Indian J Med Microbiol 2019; 37:345-350. [PMID: 32003331 DOI: 10.4103/ijmm.ijmm_19_394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction Campylobacter-mediated diarrhoea is one of the major causes of gastroenteritis globally. A majority of the Campylobacter spp. that cause disease in humans have been isolated from animals. Faecal contamination of food and water is the identified frequent cause of human campylobacteriosis. Methodology In the present study, faecal samples from patients with symptoms of acute diarrhoea (n = 310) and domestic animals including cows (n = 60), sheep (n = 45) and goats (n = 45) were collected from the same localities in the peri-urban Bhubaneswar city. Genomic DNA isolation followed by polymerase chain reaction and sequencing was employed to analyse Campylobacter spp.-positive samples. Results Of the 460 faecal samples, 16.77% of human samples and 25.33% of animal samples were found to be positive for Campylobacter spp. Among animals, the isolation rate was highest in sheep followed by cows and goats with 9.33%, 8.66% and 7.33%, respectively. The highest number of Campylobacter-positive cases was diagnosed in infants of 2-5 years age. Concurrent infection of other pathogens in addition to Campylobacter spp. was frequently detected in the samples. Conclusion The present study showed the incidence of Campylobacter infections in human and different animal species in and around Bhubaneswar, Odisha. The analysis suggested that domestic animals can be the potential sources for human campylobacteriosis in the region.
Collapse
Affiliation(s)
- Nirmal Kumar Mohakud
- Department of Paediatrics, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Saumya Darshana Patra
- Department of Biotechnology, Infection Biology Laboratory, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Subrat Kumar
- Department of Biotechnology, Infection Biology Laboratory, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Priyadarshi Soumyaranjan Sahu
- Department of Biotechnology, Infection Biology Laboratory, KIIT Deemed to be University, Bhubaneswar, Odisha, India; Department of Microbiology and Immunology, Medical University of the Americas, Devens, MA, USA
| | - Namrata Misra
- Department of Biotechnology, KIIT-Technology Business Incubator, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Arpit Kumar Shrivastava
- Department of Biotechnology, Infection Biology Laboratory, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|