1
|
Niculita-Hirzel H, Wild P, Hirzel AH. Season, Vegetation Proximity and Building Age Shape the Indoor Fungal Communities' Composition at City-Scale. J Fungi (Basel) 2022; 8:1045. [PMID: 36294610 PMCID: PMC9605656 DOI: 10.3390/jof8101045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to particular microbiome compositions in the built environment can affect human health and well-being. Identifying the drivers of these indoor microbial assemblages is key to controlling the microbiota of the built environment. In the present study, we used culture and metabarcoding of the fungal Internal Transcribed Spacer ribosomal RNA region to assess whether small-scale variation in the built environment influences the diversity, composition and structure of indoor air fungal communities between a heating and an unheated season. Passive dust collectors were used to collect airborne fungi from 259 dwellings representative of three major building periods and five building environments in one city-Lausanne (Vaud, Switzerland)-over a heating and an unheated period. A homogenous population (one or two people with an average age of 75 years) inhabited the households. Geographic information systems were used to assess detailed site characteristics (altitude, proximity to forest, fields and parks, proximity to the lake, and density of buildings and roads) for each building. Our analysis indicated that season was the factor that explained most of the variation in colonies forming unit (CFU) concentration and indoor mycobiome composition, followed by the period of building construction. Fungal assemblages were more diverse during the heating season than during the unheated season. Buildings with effective insulation had distinct mycobiome compositions from those built before 1975 - regardless of whether they were constructed with pre-1945 technology and materials or 1945 - 1974 ones. The urban landscape-as a whole-was a significant predictor of cultivable Penicillium load-the closer the building was to the lake, the higher the Penicillium load-but not of fungal community composition. Nevertheless, the relative abundance of eleven fungal taxa detected by metabarcoding decreased significantly with the urbanization gradient. When urban landscape descriptors were analyzed separately, the explanatory power of proximity to vegetation in shaping fungal assemblages become significant, indicating that land cover type had an influence on fungal community structure that was obscured by the effects of building age and sampling season. In conclusion, indoor mycobiomes are strongly modulated by season, and their assemblages are shaped by the effectiveness of building insulation, but are weakly influenced by the urban landscape.
Collapse
Affiliation(s)
- Hélène Niculita-Hirzel
- Department Work, Health & Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, CH-1066 Epalinges-Lausanne, Switzerland
| | - Pascal Wild
- Department Work, Health & Environment, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, CH-1066 Epalinges-Lausanne, Switzerland
| | - Alexandre H. Hirzel
- Computer Science Center, Amphimax Building, Quartier Sorge, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Leaf-Associated Epiphytic Fungi of Gingko biloba, Pinus bungeana and Sabina chinensis Exhibit Delicate Seasonal Variations. J Fungi (Basel) 2022; 8:jof8060631. [PMID: 35736114 PMCID: PMC9225447 DOI: 10.3390/jof8060631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Plant-leaf surface on Earth harbors complex microbial communities that influence plant productivity and health. To gain a detailed understanding of the assembly and key drivers of leaf microbial communities, especially for leaf-associated fungi, we investigated leaf-associated fungal communities in two seasons for three plant species at two sites by high-throughput sequencing. The results reveal a strong impact of growing season and plant species on fungal community composition, exhibiting clear temporal patterns in abundance and diversity. For the deciduous tree Gingko biloba, the number of enriched genera in May was much higher than that in October. The number of enriched genera in the two evergreen trees Pinus bungeana and Sabina chinensis was slightly higher in October than in May. Among the genus-level biomarkers, the abundances of Alternaria, Cladosporium and Filobasidium were significantly higher in October than in May in the three tree species. Additionally, network correlations between the leaf-associated fungi of G. biloba were more complex in May than those in October, containing extra negative associations, which was more obvious than the network correlation changes of leaf-associated fungi of the two evergreen plant species. Overall, the fungal diversity and community composition varied significantly between different growing seasons and host plant species.
Collapse
|
3
|
Adi Wicaksono W, Reisenhofer-Graber T, Erschen S, Kusstatscher P, Berg C, Krause R, Cernava T, Berg G. Phyllosphere-associated microbiota in built environment: Do they have the potential to antagonize human pathogens? J Adv Res 2022; 43:109-121. [PMID: 36585101 PMCID: PMC9811327 DOI: 10.1016/j.jare.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The plant microbiota is known to protect its host against invasion by plant pathogens. Recent studies have indicated that the microbiota of indoor plants is transmitted to the local built environment where it might fulfill yet unexplored functions. A better understanding of the interplay of such microbial communities with human pathogens might provide novel cues related to natural inhibition of them. OBJECTIVE We studied the plant microbiota of two model indoor plants, Musa acuminata and Chlorophytum comosum, and their effect on human pathogens. The main objective was to identify mechanisms by which the microbiota of indoor plants inhibits human-pathogenic bacteria. METHODS Microbial communities and functioning were investigated using a comprehensive set of experiments and methods combining amplicon and shotgun metagenomic analyses with results from interaction assays. RESULTS A diverse microbial community was found to be present on Musa and Chlorophytum grown in different indoor environments; the datasets comprised 1066 bacterial, 1261 fungal, and 358 archaeal ASVs. Bacterial communities were specific for each plant species, whereas fungal and archaeal communities were primarily shaped by the built environment. Sphingomonas and Bacillus were found to be prevalent components of a ubiquitous core microbiome in the two model plants; they are well-known for antagonistic activity towards plant pathogens. Interaction assays indicated that they can also antagonize opportunistic human pathogens. Moreover, the native plant microbiomes harbored a broad spectrum of biosynthetic gene clusters, and in parallel, a variety of antimicrobial resistance genes. By conducting comparative metagenomic analyses between plants and abiotic surfaces, we found that the phyllosphere microbiota harbors features that are clearly distinguishable from the surrounding abiotic surfaces. CONCLUSIONS Naturally occurring phyllosphere bacteria can potentially act as a protective shield against opportunistic human pathogens. This knowledge and the underlying mechanisms can provide an important basis to establish a healthy microbiome in built environments.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | | | - Sabine Erschen
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Christian Berg
- Institute of Plant Sciences, Karl-Franzens-University, Graz, Austria.
| | - Robert Krause
- Department of Internal Medicine, Medical University of Graz, Graz, Austria; BioTechMed Graz, Inter-university Cooperation Platform, Graz, Austria.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; BioTechMed Graz, Inter-university Cooperation Platform, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; BioTechMed Graz, Inter-university Cooperation Platform, Graz, Austria; Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
4
|
Human Milk Oligosaccharides Modulate the Risk for Preterm Birth in a Microbiome-Dependent and -Independent Manner. mSystems 2020; 5:5/3/e00334-20. [PMID: 32518196 PMCID: PMC7289590 DOI: 10.1128/msystems.00334-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The causes for preterm birth (PTB) often remain elusive. We investigated whether circulating human milk oligosaccharides (HMOs) might be involved in modulating urinary and vaginal microbiome promoting or preventing PTB. We identified here HMOs and key microbial taxa associated with indicators of PTB. Based on our results, we propose two models for how HMOs might modulate risk for PTB: (i) by changes in HMOs associated with sterile inflammation (microbiome-independent) and (ii) by HMO-driven shifts in microbiome (microbiome-dependent). Our findings will guide current efforts to better predict the risk for PTB in seemingly healthy pregnant women and also provide appropriate preventive strategies. Preterm birth (PTB) is one of the leading causes of neonatal mortality. The causes for spontaneous PTB are multifactorial and often remain unknown. In this study, we tested the hypothesis that human milk oligosaccharides (HMOs) in blood and urine modulate the maternal urinary and vaginal microbiome and influence the risk for PTB. We analyzed the vaginal and urinary microbiome of a cross-sectional cohort of women with or without preterm labor and correlated our findings with measurements of metabolites and HMOs in urine and blood. We identified several microbial signatures, such as Lactobacillus jensenii, L. gasseri, Ureaplasma sp., and Gardnerella sp., associated with a short cervix, PTB, and/or preterm contractions. In addition, we observed associations between sialylated HMOs, in particular 3′-sialyllactose, with PTB, short cervix, and increased inflammation and confirmed an influence of HMOs on the microbiome profile. Since they identify serum and urinary HMOs and several key microorganisms associated with PTB, our findings point at two distinct processes modulating the risk for PTB. One process seems to be driven by sterile inflammation, characterized by increased concentrations of sialylated HMOs in serum. Another process might be microbiome mediated and potentially associated with specific HMO signatures in urine. Our results support current efforts to improve diagnostics and therapeutic strategies in PTB. IMPORTANCE The causes for preterm birth (PTB) often remain elusive. We investigated whether circulating human milk oligosaccharides (HMOs) might be involved in modulating urinary and vaginal microbiome promoting or preventing PTB. We identified here HMOs and key microbial taxa associated with indicators of PTB. Based on our results, we propose two models for how HMOs might modulate risk for PTB: (i) by changes in HMOs associated with sterile inflammation (microbiome-independent) and (ii) by HMO-driven shifts in microbiome (microbiome-dependent). Our findings will guide current efforts to better predict the risk for PTB in seemingly healthy pregnant women and also provide appropriate preventive strategies.
Collapse
|
5
|
Kurath-Koller S, Neumann C, Moissl-Eichinger C, Kraschl R, Kanduth C, Hopfer B, Pausan MR, Urlesberger B, Resch B. Hospital Regimens Including Probiotics Guide the Individual Development of the Gut Microbiome of Very Low Birth Weight Infants in the First Two Weeks of Life. Nutrients 2020; 12:E1256. [PMID: 32354144 PMCID: PMC7281991 DOI: 10.3390/nu12051256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is unknown to what extent the microbiome of preterm infants is influenced by hospital regimens including the use of different probiotics when it comes to the prevention of necrotizing enterocolitis (NEC). METHODS Prospective controlled multicenter cohort study including very low birth weight infants from three neonatal intensive care units (NICUs) between October 2015 and March 2017. During this time span, stool was sampled every other day during the first two weeks and samples were subjected to amplicon-based microbiome analyses. Out of these, seventeen negative controls were processed (German Registry of Clinical Trials (No.: DRKS00009290)). RESULTS The groups (3 × 18 infants) showed no statistically significant difference regarding gestational age, birth weight, APGAR scores and oxygen demand. 2029 different taxa were detected, including Enterococcus and Staphylococcus, as well as the probiotic genera Lactobacillus and Bifidobacterium predominating. The bacterial load was found to increase earlier on when probiotics were used. Without probiotics administration, Lactobacillus and Bifidobacterium contributed only marginally to the fecal microbiome. Some infants did not respond to probiotic administration. The samples from all centers participating reached a very similar diversity after two weeks while the microbiome samples from all three centers clustered significantly yet varied from each other. CONCLUSION Probiotics proved to be safe and initiated an earlier increase of bacterial load (with marked individual divergences), which might play a crucial role in the prevention of neonatal morbidities. Meconium was found not to be free of bacterial DNA, and oral antibiotics did not influence the fecal microbiome development negatively, and hospital regimes led to a center-specific, distinct cluster formation.
Collapse
Affiliation(s)
- Stefan Kurath-Koller
- Division of Neonatology, Department of Pediatrics, Medical University of Graz, Austria Auenbruggerplatz 34/2, 8036 Graz, Austria
- Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, 8036 Graz, Austria
| | - Charlotte Neumann
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, 8010 Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, 8010 Graz, Austria
- Biotechmed Graz, 8010 Graz, Austria
| | - Raimund Kraschl
- Department of Pediatrics, General Hospital Klagenfurt am Wörthersee, 9020 Klagenfurt, Austria
| | - Claudia Kanduth
- Department of Pediatrics, General Hospital Klagenfurt am Wörthersee, 9020 Klagenfurt, Austria
| | - Barbara Hopfer
- Department of Pediatrics, General Hospital Hochsteiermark, 8700 Leoben, Austria
| | - Manuela-Raluca Pausan
- Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, 8010 Graz, Austria
| | - Berndt Urlesberger
- Division of Neonatology, Department of Pediatrics, Medical University of Graz, Austria Auenbruggerplatz 34/2, 8036 Graz, Austria
| | - Bernhard Resch
- Division of Neonatology, Department of Pediatrics, Medical University of Graz, Austria Auenbruggerplatz 34/2, 8036 Graz, Austria
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
6
|
Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 2020; 10:107. [PMID: 32095421 DOI: 10.1007/s13205-020-2081-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
Penicillium genus constituted by over 200 species is one of the largest and fascinating groups of fungi, particularly well established as a source of antibiotics. Endophytic Penicillium has been reported to colonize their ecological niches and protect their host plant against multiples stresses by exhibiting diverse biological functions that can be exploited for countless applications including agricultural, biotechnological, and pharmaceutical. Over the past 2 decades, endophytic Penicillium species have been investigated beyond their antibiotic potential and numerous applications have been reported. We comprehensively summarized in this review available data (2000-2019) regarding bioactive compounds isolated from endophytic Penicillium species as well as the application of these fungi in multiple agricultural and biotechnological processes. This review has shown that a very large number (131) of endophytes from this genus have been investigated so far and more than 280 compounds exhibiting antimicrobial, anticancer, antiviral, antioxidants, anti-inflammatory, antiparasitics, immunosuppressants, antidiabetic, anti-obesity, antifibrotic, neuroprotective effects, and insecticidal and biocontrol activities have been reported. Moreover, several endophytic Penicillium spp. have been characterized as biocatalysts, plant growth promoters, phytoremediators, and enzyme producers. We hope that this review summarizes the status of research on this genus and will stimulate further investigations.
Collapse
|
7
|
Hassani MA, Özkurt E, Seybold H, Dagan T, Stukenbrock EH. Interactions and Coadaptation in Plant Metaorganisms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:483-503. [PMID: 31348865 DOI: 10.1146/annurev-phyto-082718-100008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plants associate with a wide diversity of microorganisms. Some microorganisms engage in intimate associations with the plant host, collectively forming a metaorganism. Such close coexistence with plants requires specific adaptations that allow microorganisms to overcome plant defenses and inhabit plant tissues during growth and reproduction. New data suggest that the plant immune system has a broader role beyond pathogen recognition and also plays an important role in the community assembly of the associated microorganism. We propose that core microorganisms undergo coadaptation with their plant host, notably in response to the plant immune system allowing them to persist and propagate in their host. Microorganisms, which are vertically transmitted from generation to generation via plant seeds, putatively compose highly adapted species and may have plant-beneficial functions. The extent to which plant domestication has impacted the underlying genetics of plant-microbe associations remains poorly understood. We propose that the ability of domesticated plants to select and maintain advantageous microbial partners may have been affected. In this review, we discuss factors that impact plant metaorganism assembly and function. We underline the importance of microbe-microbe interactions in plant tissues, as they are still poorly studied but may have a great impact on plant health.
Collapse
Affiliation(s)
- M Amine Hassani
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Ezgi Özkurt
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Heike Seybold
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Tal Dagan
- Institute of Microbiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|