1
|
Gómez-Villegas P, Pérez-Rodríguez M, Porres JM, Prados JC, Melguizo C, Vigara J, Moreno-Garrido I, León R. Metataxonomy and pigments analyses unravel microbial diversity and the relevance of retinal-based photoheterotrophy at different salinities in the Odiel Salterns (SW, Spain). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113043. [PMID: 39442447 DOI: 10.1016/j.jphotobiol.2024.113043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Salinity has a strong influence on microorganisms distribution patterns and consequently on the relevance of photoheterotrophic metabolism, which since the discovery of proteorhodopsins is considered the main contributor to solar energy capture on the surface of the oceans. Solar salterns constitute an exceptional system for the simultaneous study of several salt concentrations, ranging from seawater, the most abundant environment on Earth, to saturated brine, one of the most extreme, which has been scarcely studied. In this study, pigment composition across the salinity gradient has been analyzed by spectrophotometry and RP-HPLC, and the influence of salinity on microbial diversity of the three domains of life has been evaluated by a metataxonomic study targeting hypervariable regions of 16S and 18S rRNA genes. Furthermore, based on the chlorophyll a and retinal content, we have estimated the relative abundance of rhodopsins and photosynthetic reaction centers, concluding that there is a strong correlation between the retinal/chlorophyll a ratio and salinity. Retinal-based photoheterotrophy is particularly important for prokaryotic survival in hypersaline environments, surpassing the sunlight energy captured by photosynthesis, and being more relevant as salinity increases. This fact has implications for understanding the survival of microorganisms in extreme conditions and the energy dynamics in solar salter ponds.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, 21071 Huelva, Spain
| | - Miguel Pérez-Rodríguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - Jesús M Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - José C Prados
- Department of Anatomy and Embryology, Faculty of Medicine, Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Consolación Melguizo
- Department of Anatomy and Embryology, Faculty of Medicine, Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, 21071 Huelva, Spain
| | - Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (CSIC), Campus Univ. Río San Pedro, Puerto Real, 11519 Cádiz, Spain
| | - Rosa León
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, 21071 Huelva, Spain.
| |
Collapse
|
2
|
Vass M, Székely AJ, Carlsson-Graner U, Wikner J, Andersson A. Microeukaryote community coalescence strengthens community stability and elevates diversity. FEMS Microbiol Ecol 2024; 100:fiae100. [PMID: 39003240 PMCID: PMC11287207 DOI: 10.1093/femsec/fiae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024] Open
Abstract
Mixing of entire microbial communities represents a frequent, yet understudied phenomenon. Here, we mimicked estuarine condition in a microcosm experiment by mixing a freshwater river community with a brackish sea community and assessed the effects of both environmental and community coalescences induced by varying mixing processes on microeukaryotic communities. Signs of shifted community composition of coalesced communities towards the sea parent community suggest asymmetrical community coalescence outcome, which, in addition, was generally less impacted by environmental coalescence. Community stability, inferred from community cohesion, differed among river and sea parent communities, and increased following coalescence treatments. Generally, community coalescence increased alpha diversity and promoted competition from the introduction (or emergence) of additional (or rare) species. These competitive interactions in turn had community stabilizing effect as evidenced by the increased proportion of negative cohesion. The fate of microeukaryotes was influenced by mixing ratios and frequencies (i.e. one-time versus repeated coalescence). Namely, diatoms were negatively impacted by coalescence, while fungi, ciliates, and cercozoans were promoted to varying extents, depending on the mixing ratios of the parent communities. Our study suggests that the predictability of coalescence outcomes was greater when the sea parent community dominated the final community, and this predictability was further enhanced when communities collided repeatedly.
Collapse
Affiliation(s)
- Máté Vass
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Division of Systems and Synthetic Biology, Department of Life Sciences, Science for Life Laboratory, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anna J Székely
- Division of Microbial Ecology, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Ulla Carlsson-Graner
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, SE-90571 Hörnefors, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, SE-90571 Hörnefors, Sweden
| |
Collapse
|
3
|
Genitsaris S, Stefanidou N, Hatzinikolaou D, Kourkoutmani P, Michaloudi E, Voutsa D, Gros M, García-Gómez E, Petrović M, Ntziachristos L, Moustaka-Gouni M. Marine Microbiota Responses to Shipping Scrubber Effluent Assessed at Community Structure and Function Endpoints. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38415986 DOI: 10.1002/etc.5834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
The use of novel high-throughput sequencing (HTS) technologies to examine the responses of natural multidomain microbial communities to scrubber effluent discharges to the marine environment is still limited. Thus, we applied metabarcoding sequencing targeting the planktonic unicellular eukaryotic and prokaryotic fraction (phytoplankton, bacterioplankton, and protozooplankton) in mesocosm experiments with natural microbial communities from a polluted and an unpolluted site. Furthermore, metagenomic analysis revealed changes in the taxonomic and functional dominance of multidomain marine microbial communities after scrubber effluent additions. The results indicated a clear shift in the microbial communities after such additions, which favored bacterial taxa with known oil and polycyclic aromatic hydrocarbons (PAHs) biodegradation capacities. These bacteria exhibited high connectedness with planktonic unicellular eukaryotes employing variable trophic strategies, suggesting that environmentally relevant bacteria can influence eukaryotic community structure. Furthermore, Clusters of Orthologous Genes associated with pathways of PAHs and monocyclic hydrocarbon degradation increased in numbers at treatments with high scrubber effluent additions acutely. These genes are known to express enzymes acting at various substrates including PAHs. These indications, in combination with the abrupt decrease in the most abundant PAHs in the scrubber effluent below the limit of detection-much faster than their known half-lives-could point toward a bacterioplankton-initiated rapid ultimate biodegradation of the most abundant toxic contaminants of the scrubber effluent. The implementation of HTS could be a valuable tool to develop multilevel biodiversity indicators of the scrubber effluent impacts on the marine environment, which could lead to improved impact assessment. Environ Toxicol Chem 2024;00:1-18. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Savvas Genitsaris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitris Hatzinikolaou
- Department of Botany, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Polyxeni Kourkoutmani
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Michaloudi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), Girona, Spain
- University of Girona (UdG), Girona, Spain
| | - Elisa García-Gómez
- Catalan Institute for Water Research (ICRA), Girona, Spain
- University of Girona (UdG), Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Leonidas Ntziachristos
- Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Li T, Liu G, Yuan H, Chen J, Lin X, Li H, Yu L, Wang C, Li L, Zhuang Y, Senjie L. Eukaryotic plankton community assembly and influencing factors between continental shelf and slope sites in the northern South China Sea. ENVIRONMENTAL RESEARCH 2023; 216:114584. [PMID: 36270532 DOI: 10.1016/j.envres.2022.114584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/11/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Eukaryotic plankton are pivotal members of marine ecosystems playing crucial roles in marine food webs and biogeochemical cycles. However, understanding the patterns and drivers of their community assembly remains a grand challenge. A study was conducted in the northern South China Sea (SCS) to address this issue. Here, 49 samples were collected and size-fractionated from discrete depths at continental shelf and continental slope in the northern SCS over a diel cycle. From high throughput sequencing of the 18S rDNA gene V4 region, 2463 operational taxonomic units (OTUs) were retrieved. Alveolata and Opisthokonta overwhelmingly dominated the assemblages in the abundance (44.76%, 31.08%) and species richness (59%, 12%). Biodiversity was higher in the slope than the shelf and increased with depth. Temperature and salinity appeared to be the most important deterministic drivers of taxon composition. Community structure was influenced by multiple factors in the importance order of: environmental factors (temperature + salinity) > spatial factor > water depth > sampling time. Furthermore, the neutral model explained more variations in the smaller-sized (0.22-3 μm) community (24%) than larger-sized (3-200 μm) community (16%) but generally explained less variations than did deterministic processes. Additionally, our data indicated that the larger plankton might be more environmentally filtered and less plastic whereas the smaller plankton had stronger dispersal ability. This study sheds light on the differential contributions of the deterministic process and stochastic process and complexities of assembly mechanisms in shaping the community assembly of micro-nano and pico-eukaryotic biospheres in a subtropical ocean.
Collapse
Affiliation(s)
- Tangcheng Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, 266555, China
| | - Huatao Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, 266555, China; Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongfei Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yunyun Zhuang
- Key Laboratory of Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Lin Senjie
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| |
Collapse
|
5
|
Schweizer M, Jauffrais T, Choquel C, Méléder V, Quinchard S, Geslin E. Trophic strategies of intertidal foraminifera explored with single-cell microbiome metabarcoding and morphological methods: What is on the menu? Ecol Evol 2022; 12:e9437. [PMID: 36407902 PMCID: PMC9666909 DOI: 10.1002/ece3.9437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
In mudflats, interactions and transfers of nutrients and secondary metabolites may drive ecosystems and biodiversity. Foraminifera have complex trophic strategies as they often rely on bacteria and eukaryotes or on potential symbionts for carbon and nitrogen resources. The capacity of these protists to use a wide range of adaptive mechanisms requires clarifying the relationships between them and their microbial associates. Here, we investigate the interactions of three foraminiferal species with nearby organisms in situ, by coupling molecular (cloning/Sanger and high-throughput sequencing) and direct counting and morphological identification with microscopy. This coupling allows the identification of the organisms found in or around three foraminiferal species through molecular tools combined with a direct counting of foraminifera and diatoms present in situ through microscopy methods. Depending on foraminiferal species, and in addition to diatom biomass, diatom frustule shape, size and species are key factors driving the abundance and diversity of foraminifera in mudflat habitats. Three different trophic strategies were deduced for the foraminifera investigated in this study: Ammonia sp. T6 has an opportunistic strategy and is feeding on bacteria, nematoda, fungi, and diatoms when abundant; Elphidium oceanense is feeding mainly on diatoms, mixed with other preys when they are less abundant; and Haynesina germanica is feeding almost solely on medium-large pennate diatoms. Although there are limitations due to the lack of species coverage in DNA sequence databases and to the difficulty to compare morphological and molecular data, this study highlights the relevance of combining molecular with morphological tools to study trophic interactions and microbiome communities of protists at the single-cell scale.
Collapse
Affiliation(s)
- Magali Schweizer
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| | - Thierry Jauffrais
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
- UMR 9220 ENTROPIE, Ifremer, IRD, Univ Nouvelle‐Calédonie, Univ La RéunionCNRSNoumeaNew Caledonia
| | - Constance Choquel
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
- Department of GeologyLund UniversityLundSweden
| | - Vona Méléder
- UR 2160, ISOMer, Institut des Substances et Organismes de la MerNantes UniversitéNantesFrance
| | - Sophie Quinchard
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| | - Emmanuelle Geslin
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| |
Collapse
|
6
|
Trombetta T, Vidussi F, Roques C, Mas S, Scotti M, Mostajir B. Co-occurrence networks reveal the central role of temperature in structuring the plankton community of the Thau Lagoon. Sci Rep 2021; 11:17675. [PMID: 34480057 PMCID: PMC8417261 DOI: 10.1038/s41598-021-97173-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
To identify the environmental factors that drive plankton community composition and structure in coastal waters, a shallow northwestern Mediterranean lagoon was monitored from winter to spring in two contrasting years. The campaign was based on high-frequency recordings of hydrological and meteorological parameters and weekly samplings of nutrients and the plankton community. The collected data allowed the construction of correlation networks, which revealed that water temperature was the most important factor governing community composition, structure and succession at different trophic levels, suggesting its ubiquitous food web control. Temperature favoured phytoplanktonic flagellates (Cryptophyceae, Chrysophyceae, and Chlorophyceae) and ciliates during winter and early spring. In contrast, it favoured Bacillariophyceae, dinoflagellates, phytoplankton < 6 µm and aloricate Choreotrichida during spring. The secondary factors were light, which influenced phytoplankton, and wind, which may regulate turbidity and the nutrient supply from land or sediment, thus affecting benthic species such as Nitzschia sp. and Uronema sp. or salinity-tolerant species such as Prorocentrum sp. The central role of temperature in structuring the co-occurrence network suggests that future global warming could deeply modify plankton communities in shallow coastal zones, affecting whole-food web functioning.
Collapse
Affiliation(s)
- Thomas Trombetta
- grid.121334.60000 0001 2097 0141MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Francesca Vidussi
- grid.121334.60000 0001 2097 0141MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Cécile Roques
- grid.121334.60000 0001 2097 0141MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sébastien Mas
- grid.121334.60000 0001 2097 0141MEDIMEER (Mediterranean Platform for Marine Ecosystems Experimental Research), OSU OREME, Univ Montpellier, CNRS, IRD, IRSTEA, Sète, France
| | - Marco Scotti
- grid.15649.3f0000 0000 9056 9663GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Behzad Mostajir
- grid.121334.60000 0001 2097 0141MARBEC (Marine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
7
|
Annual Partitioning Patterns of Labyrinthulomycetes Protists Reveal Their Multifaceted Role in Marine Microbial Food Webs. Appl Environ Microbiol 2021; 87:AEM.01652-20. [PMID: 33097514 DOI: 10.1128/aem.01652-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
Heterotrophic microbes play a key role in remineralizing organic material in the coastal ocean. While there is a significant body of literature examining heterotrophic bacterioplankton and phytoplankton communities, much less is known about the diversity, dynamics, and ecology of eukaryotic heterotrophs. Here, we focus on the Labyrinthulomycetes, a fungus-like protistan group whose biomass can exceed that of the bacterioplankton in coastal waters. We examined their diversity and community structure in a weekly temperate coastal ocean time series. Their seasonal community patterns were related to temperature, insolation, dissolved inorganic carbon, fungal abundance, ammonia, chlorophyll a, pH, and other environmental variables. Similar to the bacterioplankton, annual community patterns of the Labyrinthulomycetes were dominated by a few persistent taxa with summer or winter preferences. However, like the patterns of fungi at this site, the majority of the Labyrinthulomycetes phylotypes occurred mostly as short, reoccurring, season-specific blooms. Furthermore, some specific phylotypes of Labyrinthulomycetes displayed time-lagged correlations or cooccurrences with bacterial, algal, or fungal phylotypes, suggesting their potentially multifaceted involvement in the marine food webs. Overall, this study reports niche partitioning between closely related Labyrinthulomycetes and identifies distinct ecotypes and temporal patterns compared to bacterioplankton and fungi.IMPORTANCE Increasing evidence has shown that heterotrophic microeukaryotes are an important component in global marine ecosystems, while their diversity and ecological functions remain largely unknown. Without appropriately incorporating these organisms into the food web models, our current understanding of marine microbial community ecology is incomplete, which may further hamper broader studies of biogeochemistry and climate change. This study focuses on a major group of unicellular fungus-like protists (Labyrinthulomycetes) and reveals their distinct annual community patterns relative to fungi and bacteria. Results of our observations provide new information on the community structure and ecology of this protistan group and shed light on the intricate ecological roles of unicellular heterotrophic eukaryotes in the coastal oceans.
Collapse
|
8
|
Variability and Community Composition of Marine Unicellular Eukaryote Assemblages in a Eutrophic Mediterranean Urban Coastal Area with Marked Plankton Blooms and Red Tides. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12030114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Thessaloniki Bay is a eutrophic coastal area which has been characterized in recent years by frequent and intense phytoplankton blooms and red tides. The aim of the study was to investigate the underexplored diversity of marine unicellular eukaryotes in four different sampling sites in Thessaloniki Bay during a year of plankton blooms, red tides, and mucilage aggregates. High-Throughput Sequencing (HTS) was applied in extracted DNA from weekly water samples targeting the 18S rRNA gene. In almost all samples, phytoplankton blooms and/or red tides and mucilage aggregates were observed. The metabarcoding analysis has detected the known unicellular eukaryotic groups frequently observed in the Bay, dominated by Bacillariophyta and Dinoflagellata, and revealed taxonomic groups previously undetected in the study area (MALVs, MAST, and Cercozoa). The dominant OTUs were closely related to species known to participate in red tides, harmful blooms, and mucilage aggregates. Other OTUs, present also during the blooms in low abundance (number of reads), were closely related to known harmful species, suggesting the occurrence of rare taxa with potential negative impacts on human health not detectable with classical microscopy. Overall, the unicellular eukaryote assemblages showed temporal patterns rather than small-scale spatial separation responding to the variability of physical and chemical factors.
Collapse
|
9
|
Patterns in Alpha and Beta Phytoplankton Diversity along a Conductivity Gradient in Coastal Mediterranean Lagoons. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12010038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the diversity patterns of phytoplankton assemblages in coastal lagoons is clearly important for water management. In this study, we explored alpha and beta diversity patterns in phytoplankton communities across five Mediterranean lagoons hydrologically connected to Vistonikos Gulf. We examined the phytoplankton community composition and biomass on a monthly basis from November 2018 to October 2019. For this, water samples were collected from seven inshore, brackish and coastal waters, sampling sites covering a wide range of conductivity. We found significant spatial and temporal differences in phytoplankton alpha diversity and in phytoplankton biomass metrics explained by the high variation of conductivity. Evenness remained low throughout the study period, reflecting significant dominance of several phytoplankton blooms. Harmful algal blooms of Prorocentrum minimum, Alexandrium sp., Rhizosolenia setigera and Cylindrotheca closterium occurred. The system’s species pool was characterized by relatively high phytoplankton beta diversity (average ~0.7) resulting from high temporal species turnover (90%). Overall, alpha and beta diversity components were indicative of rather heterogeneous phytoplankton communities which were associated with the high differences in conductivity among the sampling sites.
Collapse
|
10
|
Stefanidou N, Genitsaris S, Lopez-Bautista J, Sommer U, Moustaka-Gouni M. Response of a coastal Baltic Sea diatom-dominated phytoplankton community to experimental heat shock and changing salinity. Oecologia 2019; 191:461-474. [DOI: 10.1007/s00442-019-04502-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 09/04/2019] [Indexed: 12/26/2022]
|