1
|
Cochard C, Caby M, Gruau P, Madec E, Marceau M, Macavei I, Lemoine J, Le Danvic C, Bouchart F, Delrue B, Bontemps-Gallo S, Lacroix JM. Emergence of the Dickeya genus involved duplication of the OmpF porin and the adaptation of the EnvZ-OmpR signaling network. Microbiol Spectr 2023; 11:e0083323. [PMID: 37642428 PMCID: PMC10581057 DOI: 10.1128/spectrum.00833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
Genome evolution, and more specifically gene duplication, is a key process shaping host-microorganism interaction. The conserved paralogs usually provide an advantage to the bacterium to thrive. If not, these genes become pseudogenes and disappear. Here, we show that during the emergence of the genus Dickeya, the gene encoding the porin OmpF was duplicated. Our results show that the ompF2 expression is deleterious to the virulence of Dickeya dadantii, the agent causing soft rot disease. Interestingly, ompF2 is regulated while ompF is constitutive but activated by the EnvZ-OmpR two-component system. In vitro, acidic pH triggers the system. The pH measured in four eudicotyledons increased from an initial pH of 5.5 to 7 within 8 h post-infection. Then, the pH decreased to 5.5 at 10 h post-infection and until full maceration of the plant tissue. Yet, the production of phenolic acids by the plant's defenses prevents the activation of the EnvZ-OmpR system to avoid the ompF2 expression even though environmental conditions should trigger this system. We highlight that gene duplication in a pathogen is not automatically an advantage for the infectious process and that, there was a need for our model organism to adapt its genetic regulatory networks to conserve these duplicated genes. IMPORTANCE Dickeya species cause various diseases in a wide range of crops and ornamental plants. Understanding the molecular program that allows the bacterium to colonize the plant is key to developing new pest control methods. Unlike other enterobacterial pathogens, Dickeya dadantii, the causal agent of soft rot disease, does not require the EnvZ-OmpR system for virulence. Here, we showed that during the emergence of the genus Dickeya, the gene encoding the porin OmpF was duplicated and that the expression of ompF2 was deleterious for virulence. We revealed that while the EnvZ-OmpR system was activated in vitro by acidic pH and even though the pH was acidic when the plant is colonized, this system was repressed by phenolic acid (generated by the plant's defenses). These results provide a unique- biologically relevant-perspective on the consequence of gene duplication and the adaptive nature of regulatory networks to retain the duplicated gene.
Collapse
Affiliation(s)
- Clémence Cochard
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marine Caby
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Peggy Gruau
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Edwige Madec
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Michael Marceau
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Iulia Macavei
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Jérôme Lemoine
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Chrystelle Le Danvic
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- R&D Department, ALLICE, Paris, France
| | - Franck Bouchart
- Université Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France
| | - Brigitte Delrue
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Bontemps-Gallo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Marie Lacroix
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
2
|
Lv M, Ye S, Hu M, Xue Y, Liang Z, Zhou X, Zhang L, Zhou J. Two-component system ArcBA modulates cell motility and biofilm formation in Dickeya oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:1033192. [PMID: 36340374 PMCID: PMC9634086 DOI: 10.3389/fpls.2022.1033192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Phytopathogen Dickeya oryzae is a causal agent of rice foot rot disease and the pathogen has an array of virulence factors, such as phytotoxin zeamines, plant cell wall degrading enzymes, cell motility, and biofilms, collectively contributing to the bacterial pathogenesis. In this study, through deletion analysis of predicted regulatory genes in D. oryzae EC1, we identified a two-component system associated with the regulation of bacterial virulence. The two-component system contains a histidine kinase ArcB and a response regulator ArcA, and deletion of their coding genes resulted in changed phenotypes in cell motility, biofilm formation, and bacterial virulence. Electrophoretic mobility shift assay revealed that ArcA bound to the promoters of the bcs operon and bssS, which respectively encode enzymes for the synthesis of celluloses and a biofilm formation regulatory protein. ArcA could also bind to the promoters of three virulence associated transcriptional regulatory genes, i.e., fis, slyA and ohrR. Surprisingly, although these three regulators were shown to modulate the production of cell wall degrading enzymes and zeamines, deletion of arcB and arcA did not seem to affect these phenotypes. Taken together, the findings from this study unveiled a new two-component system associated with the bacterial pathogenesis, which contributes to the virulence of D. oryzae mainly through its action on bacterial motility and biofilm formation.
Collapse
Affiliation(s)
- Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sixuan Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Absence of osmoregulated periplasmic glucan confers antimicrobial resistance and increases virulence in Escherichia coli. J Bacteriol 2021; 203:e0051520. [PMID: 33846116 DOI: 10.1128/jb.00515-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clarifying the molecular mechanisms by which bacteria acquire virulence traits is important toward understanding the bacterial virulence system. In the present study, we utilized a bacterial evolution method in a silkworm-infection model and revealed that deletion of the opgGH operon encoding synthases for osmoregulated periplasmic glucan (OPG) increased the virulence of non-pathogenic laboratory strain of Escherichia coli against silkworms. The opgGH knockout mutant exhibited resistance to the host antimicrobial peptides and antibiotics. Compared with the parent strain, the opgGH knockout mutant produced greater amounts of colanic acid, which is involved in E. coli resistance to antibiotics. RNA sequence analysis revealed that the opgGH knockout altered the expression of various genes, including the evgS/evgA two-component system that functions in antibiotic resistance. In both a colanic acid-negative background and evgS-null background, the opgGH knockout increased E. coli resistance to antibiotics and increased the silkworm killing activity of E. coli In the null background of the envZ/ompR two-component system, which genetically interacts with opgGH, the opgGH knockout increased the antibiotic resistance and the virulence in silkworms. These findings suggest that the absence of OPG confers antimicrobial resistance and virulence of E. coli in a colanic acid-, evgS/evgA-, and envZ/ompR- independent manner.IMPORTANCEThe gene mutation types that increase bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms. We revealed that knockout of OPG synthases increases E. coli virulence against silkworms. The OPG-knockout mutants were resistant to host antimicrobial peptides as well as antibiotics. Our findings not only suggest a novel mechanism for virulence acquisition in E. coli, but also support the usefulness of utilizing the bacterial experimental evolution method in the silkworm infection model.
Collapse
|
4
|
Comparison of Transcriptional Responses and Metabolic Alterations in Three Multidrug-Resistant Model Microorganisms, Staphylococcus aureus ATCC BAA-39, Escherichia coli ATCC BAA-196, and Acinetobacter baumannii ATCC BAA-1790, on Exposure to Iodine-Containing Nano-micelle Drug FS-1. mSystems 2021; 6:6/2/e01293-20. [PMID: 33727401 PMCID: PMC8547003 DOI: 10.1128/msystems.01293-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iodine is one of the oldest antimicrobial agents. Until now, there have been no reports on acquiring resistance to iodine. Recent studies showed promising results on application of iodine-containing nano-micelles, FS-1, against antibiotic-resistant pathogens as a supplement to antibiotic therapy. The mechanisms of the action, however, remain unclear. The aim of this study was to perform a holistic analysis and comparison of gene regulation in three phylogenetically distant multidrug-resistant reference strains representing pathogens associated with nosocomial infections from the ATCC culture collection: Escherichia coli BAA-196, Staphylococcus aureus BAA-39, and Acinetobacter baumannii BAA-1790. These cultures were treated by a 5-min exposure to sublethal concentrations of the iodine-containing drug FS-1 applied in the late lagging phase and the middle of the logarithmic growth phase. Complete genome sequences of these strains were obtained in the previous studies. Gene regulation was studied by total RNA extraction and Ion Torrent sequencing followed by mapping the RNA reads against the reference genome sequences and statistical processing of read counts using the DESeq2 algorithm. It was found that the treatment of bacteria with FS-1 profoundly affected the expression of many genes involved in the central metabolic pathways; however, alterations of the gene expression profiles were species specific and depended on the growth phase. Disruption of respiratory electron transfer membrane complexes, increased penetrability of bacterial cell walls, and osmotic and oxidative stresses leading to DNA damage were the major factors influencing the treated bacteria.IMPORTANCE Infections caused by antibiotic-resistant bacteria threaten public health worldwide. Combinatorial therapy in which antibiotics are administered together with supplementary drugs improving susceptibility of pathogens to the regular antibiotics is considered a promising way to overcome this problem. An induction of antibiotic resistance reversion by the iodine-containing nano-micelle drug FS-1 has been reported recently. This drug is currently under clinical trials in Kazakhstan against multidrug-resistant tuberculosis. The effects of released iodine on metabolic and regulatory processes in bacterial cells remain unexplored. The current work provides an insight into gene regulation in the antibiotic-resistant nosocomial reference strains treated with iodine-containing nanoparticles. This study sheds light on unexplored bioactivities of iodine and the mechanisms of its antibacterial effect when applied in sublethal concentrations. This knowledge will aid in the future design of new drugs against antibiotic-resistant infections.
Collapse
|
5
|
Meng J, Bai J, Xu J, Huang C, Chen J. Differential regulation of physiological activities by RcsB and OmpR in Yersinia enterocolitica. FEMS Microbiol Lett 2020; 366:5584338. [PMID: 31598670 DOI: 10.1093/femsle/fnz210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
A thorough understanding of the mechanisms of Rcs and EnvZ/OmpR phosphorelay systems that allow Yersinia enterocolitica to thrive in various environments is crucial to prevent and control Y. enterocolitica infections. In this study, we showed that RcsB and OmpR have the ability to function differently in modulating a diverse array of physiological processes in Y. enterocolitica. The rcsB mutant stimulated flagella biosynthesis and increased motility, biofilm formation and c-di-GMP production by upregulating flhDC, hmsHFRS and hmsT. However, mutation in ompR exhibited a non-motile phenotype due to the lack of flagella. Biofilm formation was reduced and less c-di-GMP was produced through the downregulation of flhDC, hmsHFRS and hmsT expression when Y. enterocolitica was exposed to low osmolarity conditions. Furthermore, OmpR was identified to be important for Y. enterocolitica to grow in extreme temperature conditions. Importantly, ompR mutations in Y. enterocolitica were more sensitive to polymyxin B and sodium dodecyl sulfate than rcsB mutations. Since motility, biofilm formation and environmental tolerance are critical for bacterial colonization of the host, these findings indicated that OmpR is more critical than RcsB in shaping the pathogenic phenotype of Y. enterocolitica.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiaqi Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junhong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Can Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingyu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Meng J, Huang C, Huang X, Liu D, Han B, Chen J. Osmoregulated Periplasmic Glucans Transmit External Signals Through Rcs Phosphorelay Pathway in Yersinia enterocolitica. Front Microbiol 2020; 11:122. [PMID: 32117145 PMCID: PMC7013093 DOI: 10.3389/fmicb.2020.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/20/2020] [Indexed: 01/13/2023] Open
Abstract
Fast response to environmental changes plays a key role in the transmission and pathogenesis of Yersinia enterocolitica. Osmoregulated periplasmic glucans (OPGs) are known to be involved in environmental perception of several Enterobacteriaceae pathogens; however, the biological function of OPGs in Y. enterocolitica is still unclear. In this study, we investigated the role of OPGs in Y. enterocolitica by deleting the opgGH operon encoding enzymes responsible for OPGs biosynthesis. Complete loss of OPGs in the ΔopgGH mutant resulted in decreased motility, c-di-GMP production, biofilm formation and smaller cell size, whereas the overproduction of OPGs through restoration of opgGH expression promoted c-di-GMP/biofilm production and increased antibiotic resistance of Y. enterocolitica. Gene expression analysis revealed that opgGH deletion reduced transcription of flhDC, ftsAZ, hmsT and hmsHFRS genes regulated by the Rcs phosphorelay system, whereas additional deletion of rcs family genes (rcsF, rcsC, or rcsB) reversed this effect and restored motility and c-di-GMP/biofilm production but further reduced cell size. Furthermore, disruption of the Rcs phosphorelay increased the motility and promoted the induction of biofilm and c-di-GMP production regulated by OPGs through upregulating the expression of flhDC, hmsHFRS, and hmsT. However, deletion of genes encoding the EnvZ/OmpR phosphorelay downregulated the flhDC, hmsHFRS and hmsT expression, leading to the decreased motility and prevented the induction of biofilm and c-di-GMP production regulated by OPGs. These results indicated that Rcs phosphorelay had the effect on OPGs-mediated functional responses in Y. enterocolitica. Our findings disclose part of the biological role of OPGs and the underlying molecular mechanisms associated with Rcs system in the regulation of the pathogenic phenotype in Y. enterocolitica.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Can Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dingyu Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Beizhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|