1
|
Li S, Zhu Y, Xu Z, Chen L, Wang W, Cheng Z. The phylogeny and divergence time of Ophiocordyceps sinensis and its host insects based on elongation factor 1 alpha. Arch Microbiol 2023; 205:98. [PMID: 36853446 DOI: 10.1007/s00203-023-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/18/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Ophiocordyceps sinensis Berk. is a fungal parasite that parasitizes the larvae of Hepialidae and is endemic to the Qinghai-Tibet Plateau (QTP). The phylogeny and divergence time of O. sinensis and its host insects were analyzed for 137 individuals from 48 O. sinensis populations based on the elongation factor 1 alpha (EF-1α) gene. Lower nucleotide variation, with only 7 and 16 EF-1α haplotypes, was detected in O. sinensis and its host insects, respectively. The isolated and broad distribution patterns coexisted in both O. sinensis and its host insects on the QTP. The divergence time estimates show that O. sinensis and its host insects originated later than 14.33 million years (Myr) and earlier than 23.60 Myr in the Miocene period, and the major differentiation occurred later than 4 Myr. Their origin and differentiation match well with the second and third uplifts of the QTP, respectively. The host insects from the O. sinensis populations distributed around Qinghai Lake are inferred as an ancient and relict species that has survived various geological events of the QTP. It is suitable to estimate the divergence times of both O. sinensis and its host insects from the same individuals using one gene: EF-1α. Our findings of the origin, phylogeny, and evolution of the endemic species also support the epoch of geological events on the QTP.
Collapse
Affiliation(s)
- Shan Li
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Yunguo Zhu
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Zixian Xu
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Lingling Chen
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Wenqian Wang
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Zhou Cheng
- School of Life Science and Technology, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
2
|
Wu P, Qin Q, Zhang J, Zhang H, Li X, Wang H, Meng Q. The invasion process of the entomopathogenic fungus Ophiocordyceps sinensis into the larvae of ghost moths (Thitarodes xiaojinensis) using a GFP-labeled strain. Front Microbiol 2022; 13:974323. [PMID: 36118238 PMCID: PMC9479185 DOI: 10.3389/fmicb.2022.974323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Chinese cordyceps is a well-known and valuable traditional Chinese medicine that forms after Ophiocordyceps sinensis parasitizes ghost moth larvae. The low natural infection rate of O. sinensis limits large-scale artificial cultivation of Chinese cordyceps, and the invasion process is unclear. To investigate the temporal and spatial regulation when O. sinensis enters ghost moths, we constructed an O. sinensis transformant that stably expresses green fluorescent protein (GFP). Inoculating Thitarodes xiaojinensis larvae with a high concentration of GFP-labeled O. sinensis, we observed that O. sinensis conidia could adhere to the host cuticle within 2 days, germinate penetration pegs within 4 days, and produce blastospores in the host hemocoel within 6 days. The reconstructed three-dimensional (3D) structures of the invasion sites showed that penetration pegs germinated directly from O. sinensis conidia at the joining site with the larval cuticle. Differentiated appressoria or hyphae along the host epicuticle are not required for O. sinensis to invade ghost moths. Overall, the specific invasion process of O. sinensis into its host is clarified, and we provided a new perspective on the invasion process of entomopathogenic fungi.
Collapse
Affiliation(s)
- Peipei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongtuo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Qian Meng
| |
Collapse
|
3
|
Haplotype Diversity of NADPH-Cytochrome P450 Reductase Gene of Ophiocordyceps sinensis and the Effect on Fungal Infection in Host Insects. Microorganisms 2020; 8:microorganisms8070968. [PMID: 32610431 PMCID: PMC7409138 DOI: 10.3390/microorganisms8070968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 11/29/2022] Open
Abstract
Ophiocordyceps sinensis Berk. is a fungal parasite that parasitizes the larvae of Hepialidae and is used as a traditional Chinese medicine. However, it is not clear how O. sinensis infects its host. The encoding gene haplotype diversity and predicted function of the nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) related to the fungal pathogenicity was analyzed for 219 individuals from 47 O. sinensis populations. Two NADPH CPR genes of O. sinensis were detected and their dominant haplotypes were widely distributed throughout the entire distribution range in Western China. Only 5.43% of all O. sinensis individuals possessed the specific private haplotypes of NADPH CPR-1 and CPR-2 genes. Bioinformatic analyses predicted that the phosphorylation sites, motifs, and domains of NADPH CPR of O. sinensis were different between those encoding by the dominant and private gene haplotypes. The one-to-one match fungus–host correspondence of the same individual suggested that the widely distributed O. sinensis with the dominant NADPH CPR gene haplotypes may strongly infect almost all host insects through a random infection by oral or respiratory pores. Conversely, O. sinensis with the specific private NADPH CPR gene haplotypes is likely to infect only a few corresponding host insects by breaching the cuticle, due to the changed NADPH CPR structure and function.
Collapse
|