1
|
Matczak S, Bouchez V, Leroux P, Douché T, Collinet N, Landier A, Gianetto QG, Guillot S, Chamot-Rooke J, Hasan M, Matondo M, Brisse S, Toubiana J. Biological differences between FIM2 and FIM3 fimbriae of Bordetella pertussis: not just the serotype. Microbes Infect 2023; 25:105152. [PMID: 37245862 DOI: 10.1016/j.micinf.2023.105152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION Bordetella pertussis still circulates worldwide despite vaccination. Fimbriae are components of some acellular pertussis vaccines. Population fluctuations of B. pertussis fimbrial serotypes (FIM2 and FIM3) are observed, and fim3 alleles (fim3-1 [clade 1] and fim3-2 [clade 2]) mark a major phylogenetic subdivision of B. pertussis. OBJECTIVES To compare microbiological characteristics and expressed protein profiles between fimbrial serotypes FIM2 and FIM3 and genomic clades. METHODS A total of 19 isolates were selected. Absolute protein abundance of the main virulence factors, autoagglutination and biofilm formation, bacterial survival in whole blood, induced blood cell cytokine secretion, and global proteome profiles were assessed. RESULTS Compared to FIM3, FIM2 isolates produced more fimbriae, less cellular pertussis toxin subunit 1 and more biofilm, but auto-agglutinated less. FIM2 isolates had a lower survival rate in cord blood, but induced higher levels of IL-4, IL-8 and IL-1β secretion. Global proteome comparisons uncovered 15 differentially produced proteins between FIM2 and FIM3 isolates, involved in adhesion and metabolism of metals. FIM3 isolates of clade 2 produced more FIM3 and more biofilm compared to clade 1. CONCLUSION FIM serotype and fim3 clades are associated with proteomic and other biological differences, which may have implications on pathogenesis and epidemiological emergence.
Collapse
Affiliation(s)
- Soraya Matczak
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Pauline Leroux
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Nils Collinet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Milena Hasan
- Institut Pasteur, Université Paris Cité, Cytometry and Biomarkers Unit of Technology and Service (CB UTechS), 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France; Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France.
| |
Collapse
|
2
|
Xu Z, Hu D, Luu LDW, Octavia S, Keil AD, Sintchenko V, Tanaka MM, Mooi FR, Robson J, Lan R. Genomic dissection of the microevolution of Australian epidemic Bordetella pertussis. Emerg Microbes Infect 2022; 11:1460-1473. [PMID: 35543519 PMCID: PMC9176669 DOI: 10.1080/22221751.2022.2077129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Whooping cough (pertussis) is a highly contagious respiratory disease caused by the bacterium Bordetella pertussis. Despite high vaccine coverage, pertussis has re-emerged in many countries including Australia and caused two large epidemics in Australia since 2007. Here, we undertook a genomic and phylogeographic study of 385 Australian B. pertussis isolates collected from 2008 to 2017. The Australian B. pertussis population was found to be composed of mostly ptxP3 strains carrying different fim3 alleles, with ptxP3-fim3A genotype expanding far more than ptxP3-fim3B. Within the former, there were six co-circulating epidemic lineages (EL1 to EL6). The multiple ELs emerged, expanded, and then declined at different time points over the two epidemics. In population genetics terms, both hard and soft selective sweeps through vaccine selection pressures have determined the population dynamics of Australian B. pertussis. Relative risk estimation suggests that once a new B. pertussis lineage emerged, it was more likely to spread locally within the first 1.5 years. However, after 1.5 years, any new lineage was likely to expand to a wider region. Phylogenetic analysis revealed the expansion of ptxP3 strains was also associated with replacement of the type III secretion system allele bscI1 with bscI3. bscI3 is associated with decreased T3SS secretion and may allow B. pertussis to reduce immune recognition. This study advanced our understanding of the epidemic population structure and spatial and temporal dynamics of B. pertussis in a highly immunized population.
Collapse
Affiliation(s)
- Zheng Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Anthony D Keil
- Department of Microbiology, PathWest Laboratory Medicine WA, Perth Children's Hospital, Perth, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, NSW Health Pathology and Westmead Hospital, Sydney, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Frits R Mooi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jenny Robson
- Sullivan Nicolaides Pathology, Queensland, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Blancá B, Hayes JA, Surmann K, Hugo V, Hentschker C, Lamberti Y, Völker U, Rodriguez ME. Bordetella pertussis outer membrane vesicles as virulence factor vehicles that influence bacterial interaction with macrophages. Pathog Dis 2022; 80:6655986. [PMID: 35927587 DOI: 10.1093/femspd/ftac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Gram-negative pathogenic bacteria constitutively shed outer membrane vesicles (OMVs) which play a significant role in the host-pathogen interaction, eventually determining the outcome of the infection. We previously found that Bordetella pertussis, the etiological agent of whooping cough, survives the innate interaction with human macrophages remaining alive inside these immune cells. Adenylate cyclase (CyaA), one of the main toxins of this pathogen, was found involved in the modulation of the macrophage defense response, eventually promoting bacterial survival within the cells. We here investigated whether B. pertussis OMVs, loaded with most of the bacterial toxins and CyaA among them, modulate the macrophage response to the bacterial infection. We observed that the pre-incubation of macrophages with OMVs led to a decreased macrophage defense response to the encounter with the bacteria, in a CyaA dependent way. Our results suggest that CyaA delivered by B. pertussis OMVs dampens macrophages protective function by decreasing phagocytosis and the bactericidal capability of these host cells. By increasing the chances of bacterial survival to the innate encounter with the macrophages, B. pertussis OMVs might play a relevant role in the course of infection, promoting bacterial persistence within the host and eventually, shaping the whole infection process.
Collapse
Affiliation(s)
- Bruno Blancá
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Jimena Alvarez Hayes
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Valdez Hugo
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - María Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| |
Collapse
|
4
|
Modulation of Inflammatory Signaling Molecules in Bordetella pertussis Antigen-Challenged Human Monocytes in Presence of Adrenergic Agonists. Vaccines (Basel) 2022; 10:vaccines10020321. [PMID: 35214778 PMCID: PMC8879854 DOI: 10.3390/vaccines10020321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
BscF is a type III secretion system (T3SS) needle protein from Bordetella pertussis and has previously been shown to induce a sufficient Th1 and Th17 response in human monocytes and mice as a prerequisite for long-lasting protective immunity against pertussis infection. In our current study, we aim to compare the modulation of inflammatory signaling molecules as a direct measure of the immune response to the B. pertussis antigens BscF and Tdap in the presence or absence of the adrenergic receptor agonists phenylephrine (PE) or isoproterenol (ISO) to observe differences that may contribute to the diminished protective immunity of the current acellular pertussis (aP) vaccine, Tdap. Stimulation of human monocyte THP-1 cells with LPS, BscF, and Tdap induced a robust elevation of CCL20, CXCL10, PGE2, and PGF2α among most chemokine and prostanoid members when compared with the control treatment. Treatment with the adrenergic agonist PE or ISO significantly enhanced the BscF- and Tdap-stimulated modulation of CCL20 and CXCL10 but not PGE2 and PGF2α, suggesting that adrenergic modulation of pertussis antigen responses might be a new therapeutic strategy to improve the longevity of pertussis immunity. Stimulation of THP-1 cells with BscF alone initiated significant expression of CXCL10 and PGF2α but not when Tdap was used, suggesting that BscF might be an important pertussis antigen for next-generation pertussis vaccines or when combined with the current aP vaccine. Our data offer opportunities for designing new therapeutic approaches against pertussis infection.
Collapse
|
5
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
6
|
Luu LDW, Zhong L, Kaur S, Raftery MJ, Lan R. Comparative Phosphoproteomics of Classical Bordetellae Elucidates the Potential Role of Serine, Threonine and Tyrosine Phosphorylation in Bordetella Biology and Virulence. Front Cell Infect Microbiol 2021; 11:660280. [PMID: 33928046 PMCID: PMC8076611 DOI: 10.3389/fcimb.2021.660280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
The Bordetella genus is divided into two groups: classical and non-classical. Bordetella pertussis, Bordetella bronchiseptica and Bordetella parapertussis are known as classical bordetellae, a group of important human pathogens causing whooping cough or whooping cough-like disease and hypothesized to have evolved from environmental non-classical bordetellae. Bordetella infections have increased globally driving the need to better understand these pathogens for the development of new treatments and vaccines. One unexplored component in Bordetella is the role of serine, threonine and tyrosine phosphorylation. Therefore, this study characterized the phosphoproteome of classical bordetellae and examined its potential role in Bordetella biology and virulence. Applying strict identification of localization criteria, this study identified 70 unique phosphorylated proteins in the classical bordetellae group with a high degree of conservation. Phosphorylation was a key regulator of Bordetella metabolism with proteins involved in gluconeogenesis, TCA cycle, amino acid and nucleotide synthesis significantly enriched. Three key virulence pathways were also phosphorylated including type III secretion system, alcaligin synthesis and the BvgAS master transcriptional regulatory system for virulence genes in Bordetella. Seven new phosphosites were identified in BvgA with 6 located in the DNA binding domain. Of the 7, 4 were not present in non-classical bordetellae. This suggests that serine/threonine phosphorylation may play an important role in stabilizing/destabilizing BvgA binding to DNA for fine-tuning of virulence gene expression and that BvgA phosphorylation may be an important factor separating classical from non-classical bordetellae. This study provides the first insight into the phosphoproteome of classical Bordetella species and the role that Ser/Thr/Tyr phosphorylation may play in Bordetella biology and virulence.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Szymkowicz L, Wilson DJ, James DA. Development of a targeted nanoLC-MS/MS method for quantitation of residual toxins from Bordetella pertussis. J Pharm Biomed Anal 2020; 188:113395. [DOI: 10.1016/j.jpba.2020.113395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022]
|
8
|
Safarchi A, Octavia S, Nikbin VS, Lotfi MN, Zahraei SM, Tay CY, Lamichhane B, Shahcheraghi F, Lan R. Genomic epidemiology of Iranian Bordetella pertussis: 50 years after the implementation of whole cell vaccine. Emerg Microbes Infect 2020; 8:1416-1427. [PMID: 31543006 PMCID: PMC6764348 DOI: 10.1080/22221751.2019.1665479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pertussis caused by Bordetella pertussis, remains a public health problem worldwide, despite high vaccine coverage in infants and children in many countries. Iran has been using whole cell vaccine for the last 50 years with more than 95% vaccination rate since 1988 and has experienced pertussis resurgence in recent years. Here, we sequenced 55 B. pertussis isolates mostly collected from three provinces with the highest number of pertussis cases in Iran, including Tehran, Mazandaran, and Eastern-Azarbayjan from the period of 2008-2016. Most isolates carried ptxP3/prn2 alleles (42/55, 76%), the same genotype as isolates circulating in acellular vaccine-administrating countries. The second most frequent genotype was ptxP3/prn9 (8/55, 14%). Only three isolates (5%) were ptxP1. Phylogenetic analysis showed that Iranian ptxP3 isolates can be divided into eight clades (Clades 1-8) with no temporal association. Most of the isolates from Tehran grouped together as one distinctive clade (Clade 8) with six unique single nucleotide polymorphisms (SNPs). In addition, the prn9 isolates were grouped together as Clade 5 with 12 clade-supporting SNPs. No pertactin deficient isolates were found among the 55 Iranian isolates. Our findings suggest that there is an ongoing adaptation and evolution of B. pertussis regardless of the types of vaccine used.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran.,School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| | - Vajihe Sadat Nikbin
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Masoumeh Nakhost Lotfi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Seyed Mohsen Zahraei
- Centre for Communicable Disease Control, Ministry of Health and Medical Education , Tehran , Islamic Republic of Iran
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia , Perth , Australia
| | - Binit Lamichhane
- Pathology and Laboratory Medicine, University of Western Australia , Perth , Australia
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran , Tehran , Islamic Republic of Iran
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney , Australia
| |
Collapse
|
9
|
Luu LDW, Octavia S, Aitken C, Zhong L, Raftery MJ, Sintchenko V, Lan R. Surfaceome analysis of Australian epidemic Bordetella pertussis reveals potential vaccine antigens. Vaccine 2019; 38:539-548. [PMID: 31703933 DOI: 10.1016/j.vaccine.2019.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
Since acellular vaccines (ACV) were introduced in Australia, epidemic Bordetella pertussis strains changed from single nucleotide polymorphism (SNP) cluster II to SNP cluster I. Our previous proteomic analysis identified potential proteomic adaptations in the whole cell and secretome of SNP cluster I. Additionally, current ACVs were shown to be less efficacious against cluster I in mice models and there is a pressing need to discover new antigens to improve the ACV. One important source of novel antigens is the surfaceome. Therefore, in this study we established surface shaving in B. pertussis to compare the surfaceome of SNP cluster I (L1423) and II (L1191), and identify novel surface antigens for vaccine development. Surface shaving using 1 μg of trypsin for 5 min identified 126 proteins with the most abundant being virulence-associated and known outer membrane proteins. Cell viability counts showed minimal lysis from shaving. The proportion of immunogenic proteins was higher in the surfaceome than in the whole cell and secretome. Key differences in the surfaceome were identified between SNP cluster I and II, consistent with those identified in the whole cell proteome and secretome. These differences include unique transport proteins and decreased immunogenic proteins in L1423, and provides further evidence of proteomic adaptation in SNP cluster I. Finally, a comparison of proteins in each sub-proteome identified 22 common proteins. These included 11 virulence proteins (Prn, PtxA, FhaB, CyaA, TcfA, SphB1, Vag8, BrkA, BopD, Bsp22 and BipA) and 11 housekeeping proteins (TuF, CtpA, TsF, OmpH, GltA, SucC, SucD, FusA, GroEL, BP3330 and BP3561) which were immunogenic, essential and consistently expressed thus demonstrating their potential as future targets. This study established surface shaving in B. pertussis, confirmed key expression differences and identified unknown surface proteins which may be potential vaccine antigens.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chelsea Aitken
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - Pathology West, Westmead Hospital, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|