1
|
Zhang L, Zhang G, Shi Z, He M, Ma D, Liu J. Effects of polypropylene micro(nano)plastics on soil bacterial and fungal community assembly in saline-alkaline wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173890. [PMID: 38885717 DOI: 10.1016/j.scitotenv.2024.173890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Microplastic pollution is a major environmental threat, especially to terrestrial ecosystems. To better understand the effects of microplastics on soil microbiota, the influence of micro- to nano-scale polypropylene plastics was investigated on microbial community diversity, functionality, co-occurrence, assembly, and their interaction with soil-plant using high-throughput sequencing approaches and multivariate analyses. The results showed that polypropylene micro/nano-plastics mainly reduced bacterial diversity, not fungal, and that plastic size had a stronger effect than concentration on the assembly of microbial communities. Nano-plastics decreased the complexity and connectivity of both bacterial and fungal networks compared to micro-plastics. Moreover, bacteria were more sensitive and deterministic to polypropylene micro/nano-plastic stress than fungi, as shown by their different growth rates, guanine-cytosine content, and cell structure. Interestingly, the dominant ecological process for bacteria shifted from stochastic drift to deterministic selection with polypropylene micro/nano-plastic exposure. Furthermore, nano-plastics directly or indirectly disrupted the interactions within intra-microbes and between soil-bacteria-plant by altering soil nutrients and stoichiometry (C:N:P) or plant diversity. Collectively, the results indicate that polypropylene nano-plastics pose more ecological risks to soil microbes and their plant-soil interactions. This study sheds light on the potential ecological consequences of polypropylene micro/nano-plastic pollution in terrestrial ecosystems.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Guorui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ziyue Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China..
| | - Dan Ma
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
2
|
Liu J, Zhao R, Feng J, Fu W, Cao L, Zhang J, Lei Y, Liang J, Lin L, Li X, Li B. Bacterial assembly and succession patterns in conventional and advanced drinking water systems: From source to tap. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134613. [PMID: 38788571 DOI: 10.1016/j.jhazmat.2024.134613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Bacteria are pivotal to drinking water treatment and public health. However, the mechanisms of bacterial assembly and their impact on species coexistence remain largely unexplored. This study explored the assembly and succession of bacterial communities in two full-scale drinking water systems over one year. We observed a decline in bacterial biomass, diversity, and co-occurrence network complexity along the treatment processes, except for the biological activated carbon filtration stage. The conventional plant showed higher bacterial diversity than the advanced plant, despite similar bacterial concentrations and better removal efficiency. The biological activated carbon filter exhibited high phylogenetic diversity, indicating enhanced bacterial metabolic functionality for organic matter removal. Chlorination inactivated most bacteria but favored some chlorination-resistant and potentially pathogenic species, such as Burkholderia, Bosea, Brevundimonas, and Acinetobacter. Moreover, the spatiotemporal dynamics of the bacterial continuum were primarily driven by stochastic processes, explaining more than 78% of the relative importance. The advanced plant's bacterial community was less influenced by dispersal limitation and more by homogeneous selection. The stochastic process regulated bacterial diversity and influenced the complexity of the species co-occurrence network. These findings deepen our understanding of microbial ecological mechanisms and species interactions, offering insights for enhancing hygienic safety in drinking water systems.
Collapse
Affiliation(s)
- Jie Liu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Renxin Zhao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jie Feng
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Wenjie Fu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lijia Cao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yusha Lei
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiajin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lin Lin
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
3
|
Zhang H, Zhou X, Li Z, Bartlam M, Wang Y. Anthropogenic original DOM is a critical factor affecting LNA bacterial community assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166169. [PMID: 37562635 DOI: 10.1016/j.scitotenv.2023.166169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
We investigated the geographical and environmental distance-decay relationships for both of the two bacteria in the Haihe River, Tianjin, China. HNA bacteria exhibited a stronger geographical variation-dependent pattern while LNA bacteria exhibited a stronger environmental variation-dependent pattern. Variance partition analysis (VPA), Mantel test, and partial mantel test validated the discrepant impacts of geographical distance and environmental factors on their two communities. The heterogeneous selection dominated community assembly of LNA bacteria demonstrates their greater sensitivity to environmental conditions. As the deterministic environmental factor, anthropogenic original dissolved organic matter (DOM) functions exclusively on LNA bacteria, and it is the critical factor leading to the discrepant biogeographical patterns of LNA and HNA bacteria. LNA bacteria interact with HNA bacteria and mediate the DOM driving total bacteria assembly. The LNA keystone taxa, Pseudomonas, Rheinheimera, Candidatus Aquiluna, and hgcl clade are capable to compete with HNA bacteria for anthropogenic original DOM, and are potential indicators of anthropogenic pollution. Our research reveals the non-negligible effect of the LNA bacteria in regulating the ecological response of total bacteria.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Xinzhu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Zun Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Hu W, Zhang H, Lin X, Liu R, Bartlam M, Wang Y. Characteristics, Biodiversity, and Cultivation Strategy of Low Nucleic Acid Content Bacteria. Front Microbiol 2022; 13:900669. [PMID: 35783413 PMCID: PMC9240426 DOI: 10.3389/fmicb.2022.900669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Low nucleic acid content (LNA) bacteria are ubiquitous and estimated to constitute 20%–90% of the total bacterial community in marine and freshwater environment. LNA bacteria with unique physiological characteristics, including small cell size and small genomes, can pass through 0.45-μm filtration. The researchers came up with different terminologies for low nucleic acid content bacteria based on different research backgrounds, such as: filterable bacteria, oligotrophic bacteria, and low-DNA bacteria. LNA bacteria have an extremely high level of genetic diversity and play an important role in material circulation in oligotrophic environment. However, the majority of LNA bacteria in the environment remain uncultivated. Thus, an important challenge now is to isolate more LNA bacteria from oligotrophic environments and gain insights into their unique metabolic mechanisms and ecological functions. Here, we reviewed LNA bacteria in aquatic environments, focusing on their characteristics, community structure and diversity, functions, and cultivation strategies. Exciting future prospects for LNA bacteria are also discussed.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Xiaowen Lin
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ruidan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
- *Correspondence: Yingying Wang,
| |
Collapse
|
5
|
Liu J, Li B, Wang Y, Zhang G, Jiang X, Li X. Passage and community changes of filterable bacteria during microfiltration of a surface water supply. ENVIRONMENT INTERNATIONAL 2019; 131:104998. [PMID: 31330365 DOI: 10.1016/j.envint.2019.104998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
The omnipresence of filterable bacteria that can pass through 0.22-μm membrane filters demands a change in the sterile filtration practice. In this study, we identified that filterable bacteria enriched from a surface water are members of the Bacteroidetes, Proteobacteria, Spirochaetae, Firmicutes, and Actinobacteria. Filterable bacteria displayed superior filterability during the entire bacterial growth phase, especially at the exponential phase. Maximal passage percentages were comparable at different cell densities, and achieved earlier at high cell density. Furthermore, filter retention for the investigated bacteria is independent of liquid temperature. However, cultivation temperature could affect the growth of some specific filterable bacteria and lead to variability in the passage percentage. Additionally, membrane materials, pore size and filtering flux greatly affected the passage of filterable bacteria. The majority of filterable Hylemonella and SAR324 could pass through 0.1-μm polyvinylidene fluoride and polyethersulfone filters but could not pass through 0.1-μm polycarbonate and mixed cellulose esters filters. Taken together, our results demonstrated that the ultra-small size of filterable bacteria, membrane characteristics and filtration operational conditions could challenge the validity of the 0.22/0.1-μm sterilizing grade filters in providing bio-safety barriers.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China.
| | - Yingying Wang
- College of Environmental Science and Engineering, Nankai University, China
| | - Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China
| | - Xiaotao Jiang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.
| |
Collapse
|