1
|
Roncarati D, Vannini A, Scarlato V. Temperature sensing and virulence regulation in pathogenic bacteria. Trends Microbiol 2024:S0966-842X(24)00180-X. [PMID: 39164134 DOI: 10.1016/j.tim.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Pathogenic bacteria can detect a variety of environmental signals, including temperature changes. While sudden and significant temperature variations act as danger signals that trigger a protective heat-shock response, minor temperature fluctuations typically signal to the pathogen that it has moved from one environment to another, such as entering a specific niche within a host during infection. These latter temperature fluctuations are utilized by pathogens to coordinate the expression of crucial virulence factors. Here, we elucidate the critical role of temperature in governing the expression of virulence factors in bacterial pathogens. Moreover, we outline the molecular mechanisms used by pathogens to detect temperature fluctuations, focusing on systems that employ proteins and nucleic acids as sensory devices. We also discuss the potential implications and the extent of the risk that climate change poses to human pathogenic diseases.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Xu J, Guo L, Zhao N, Meng X, Zhang J, Wang T, Wei X, Fan M. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Crit Rev Biotechnol 2023; 43:258-274. [PMID: 35114869 DOI: 10.1080/07388551.2021.2025335] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acid-resistant bacteria are more and more widely used in industrial production due to their unique acid-resistant properties. In order to survive in various acidic environments, acid-resistant bacteria have developed diverse protective mechanisms such as sensing acid stress and signal transduction, maintaining intracellular pH homeostasis by controlling the flow of H+, protecting and repairing biological macromolecules, metabolic modification, and cross-protection. Acid-resistant bacteria have broad biotechnological application prospects in the food field. The production of fermented foods with high acidity and acidophilic enzymes are the main applications of this kind of bacteria in the food industry. Their acid resistance modules can also be used to construct acid-resistant recombinant engineering strains for special purposes. However, they can also cause negative effects on foods, such as spoilage and toxicity. Herein, the aim of this paper is to summarize the research progress of molecular mechanisms against acid stress of acid-resistant bacteria. Moreover, their effects on the food industry were also discussed. It is useful to lay a foundation for broadening our understanding of the physiological metabolism of acid-resistant bacteria and better serving the food industry.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Guo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Tieru Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Improved Tolerance of Lactiplantibacillus plantarum in the Presence of Acid by the Heterologous Expression of trxA from Oenococcus oeni. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oenococcus oeni is the main microorganism that undergoes malolactic fermentation (MLF) in the winemaking industry due to its excellent adaptability to harsh wine environments. The start of MLF is often delayed or even fails, and low pH appears to be a crucial parameter. To study the function of the trxA gene in acid stress, a plasmid containing the trxA gene of O. oeni SD-2a was heterologously expressed in Lactiplantibacillus plantarum WCFS1. The recombinant strain (WCFS1-trxA) grew better than the control strain (WCFS1-Vector) under acid stress. The expression of thioredoxin system genes was much higher in the recombinant strain compared with the control strain under acid stress. In addition, a series of physiological and biochemical assays were conducted. The ATP content was lower in the recombinant strain, while the cell membrane fluidity and integrity improved in the recombinant strain. Moreover, reactive oxygen species (ROS) accumulation, intracellular GSH level, and superoxide dismutase (SOD) activity assays showed that the recombinant strain decreased the intracellular reactive oxygen species (ROS) accumulation by improving the SOD activity. In conclusion, heterologous expression of trxA improves the SOD activity of L. plantarum WCFS1, reducing bacterial ROS and increasing cell membrane fluidity and integrity, enhancing the tolerance of Lactiplantibacillus plantarum WCFS1 under acid stress.
Collapse
|
4
|
Chen YA, Chen GW, Ku HH, Huang TC, Chang HY, Wei CI, Tsai YH, Chen TY. Differential Proteomic Analysis of Listeria monocytogenes during High-Pressure Processing. BIOLOGY 2022; 11:biology11081152. [PMID: 36009779 PMCID: PMC9405252 DOI: 10.3390/biology11081152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary High-pressure processing (HPP) is a prevailing non-thermal food preservation technology. The inactivation mechanisms of Listeria monocytogenes under sub-lethal to lethal damage by different levels of HPP treatments were conducted by label-free quantitative proteomic analysis. HPP might promote translation initiation due to upregulation of most ribosomal subunits and initiation factors. However, protein synthesis was arrested according to the shortage of proteins responsible for elongation, termination and recycling. The quantitative proteomics approaches provide fundamental information on L. monocytogenes under different HPP pressures, and provide theoretical support for HPP against Listeriosis illness and for promotion of safer ready-to-eat foods. Abstract High-pressure processing (HPP) is a prevailing non-thermal food preservation technology. The inactivation mechanisms of Listeria monocytogenes under HPP at 200 and 400 MPa for 3 min were investigated by label-free quantitative proteomic analysis and functional enrichment analysis in the Kyoto Encyclopedia of Genes and Genomes. HPP treatment at 400 MPa exhibited significant effects on proteins involved in translation, carbon, carbohydrate, lipid and energy metabolism, and peptidoglycan biosynthesis. HPP increased most ribosomal subunits and initiation factors, suggesting it might shift ribosomal biogenesis to translation initiation. However, protein synthesis was impaired by the shortage of proteins responsible for elongation, termination and recycling. HPP stimulated several ATP-dependent Clp proteases, and the global transcriptional regulator Spx, associating with activation of the stress-activated sigma factor Sigma B (σB) and the transcriptional activator positive regulatory factor A (PrfA) regulons. The quantitative proteomics approaches provide fundamental information on L. monocytogenes under different HPP pressures, and provide theoretical support for HPP against Listeriosis illness and for promotion of safer ready-to-eat foods.
Collapse
Affiliation(s)
- Yi-An Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
| | - Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
| | - Hao-Hsiang Ku
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hsin-Yi Chang
- Graduate Institute of Medical Sciences, Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Cheng-I Wei
- Department of Nutrition &Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Tai-Yuan Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
- Correspondence: ; Tel.: +886-2-2462-2192 (ext. 5124); Fax: +886-2-2462-8750
| |
Collapse
|
5
|
Liu L, Peng S, Song W, Zhao H, Li H, Wang H. Genomic Analysis of an Excellent Wine-Making Strain Oenococcus oeni SD-2a. Pol J Microbiol 2022; 71:279-292. [PMID: 35716166 PMCID: PMC9252139 DOI: 10.33073/pjm-2022-026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2022] [Indexed: 12/27/2022] Open
Abstract
Oenococcus oeni is an important microorganism in wine-making-related engineering, and it improves wine quality and stability through malolactic fermentation. Although the genomes of more than 200 O. oeni strains have been sequenced, only a few include completed genome maps. Here, the genome sequence of O. oeni SD-2a, isolated from Shandong, China, has been determined. It is a fully assembled genome sequence of this strain. The complete genome is 1,989,703 bp with a G+C content of 37.8% without a plasmid. The genome includes almost all the essential genes involved in central metabolic pathways and the stress genes reported in other O. oeni strains. Some natural competence-related genes, like comEA, comEC, comFA, comG operon, and comFC, suggest that O. oeni SD-2a may have natural transformation potential. A comparative genomics analysis revealed 730 gene clusters in O. oeni SD-2a homologous to those in four other lactic acid bacteria species (O. oeni PSU-1, O. oeni CRBO-11381, Lactiplantibacillus plantarum UNQLp11, and Pediococcus pentosaceus KCCM40703). A collinearity analysis showed poor collinearity between O. oeni SD-2a and O. oeni PSU-1, indicating great differences in their evolutionary histories. The results provide general knowledge of O. oeni SD-2a and lay the foundation for specific gene function analyses. ![]()
Collapse
Affiliation(s)
- Longxiang Liu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shuai Peng
- College of food science and engineering, Gansu Agricultural University, Lanzhou, China
| | - Weiyu Song
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Hongyu Zhao
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
6
|
The production of preconditioned freeze-dried Oenococcus oeni primes its metabolism to withstand environmental stresses encountered upon inoculation into wine. Int J Food Microbiol 2022; 369:109617. [DOI: 10.1016/j.ijfoodmicro.2022.109617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 11/20/2022]
|
7
|
Abstract
Temperature is one of the ubiquitous signals that control both the development as well as virulence of various microbial species. Therefore their survival is dependent upon initiating appropriate response upon temperature fluctuations. In particular, pathogenic microbes exploit host-temperature sensing mechanisms for triggering the expression of virulence genes. Many studies have revealed that the biomolecules within a cell such as DNA, RNA, lipids and proteins help in sensing change in temperature, thereby acting as thermosensors. This review shall provide an insight into the different mechanisms of thermosensing and how they aid pathogenic microbes in host invasion.
Collapse
|
8
|
Bucka-Kolendo J, Juszczuk-Kubiak E, Sokołowska B. Effect of High Hydrostatic Pressure on Stress-Related dnaK, hrcA, and ctsR Expression Patterns in Selected Lactobacilli Strains. Genes (Basel) 2021; 12:genes12111720. [PMID: 34828326 PMCID: PMC8618040 DOI: 10.3390/genes12111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022] Open
Abstract
Lactic acid bacteria (LAB) in the natural environment meet multiple stressors such as pH and temperature variations, increased nutrition and metabolite concentrations, harmful chemicals, acidic/oxidative conditions, osmotic pressure, and starvation. However, LAB strains are not subjected to high hydrostatic pressure (HHP) which currently is the most common non-thermal decontamination technology in the food industry. In this context, the LAB response to HHP is more difficult to identify compared to other stress-induced responses, and dnaK, ctsR, and hrcA can serve as essential regulators in this reaction. In the present study, the expression level of dnaK, ctsR, and hrcA mRNAs in 15 LAB strains after the HHP (300 MPa/5′) exposure was evaluated. As a result, the HHP-treatment affected the up-regulation of dnaK, ctsR, and hrcA in L. backii KKP 3565, L. backii KKP 3566, L. rhamnosus KKP 3570, L. brevis KKP 3575 strains, whereas, in L. plantarum KKP 3569, L. rhamnosus KKP 3571, L. brevis KKP 3573 all genes were lower expressed. The relative expression level of the dnaK, ctsR, and hrcA either before or after the pressure treatment for L. brevis DSM 6235, L. rhamnosus KKP 3572, L. brevis KKP 3574, L. brevis KKP 3576, L. rossiae KKP 3577, L. curvatus KKP 3578 strains were undetectable. Significant differences in the expression levels were observed, between the control and the HHP treatment strains for dnaK in L. backii KKP 3565, L. backii KKP 3566, L. plantarum KKP 3569, L. rhamnosus KKP 3570, L. rhamnosus KKP 3571, ctsR in, L. backii KKP 3565, L. rhamnosus KKP 3570, L. rhamnosus KKP 3571, and hrcA in L. plantarum KKP 3569, L. rhamnosus KKP 3571. Overall, the studied genes, dnaK, ctsR, and hrcA can be useful markers to indicate the LAB cellular response to HHP. These molecular parameters can help to optimize the desirable LAB growing conditions in industrial processes and to understand the complexity of the stress-related mechanism.
Collapse
Affiliation(s)
- Joanna Bucka-Kolendo
- Department of Microbiology, Culture Collection of Industrial Microorganisms-Microbiological Resource Center, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
- Correspondence:
| | - Edyta Juszczuk-Kubiak
- Department of Microbiology, Laboratory of Biotechnology and Molecular Engineering, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland;
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland
| |
Collapse
|
9
|
Chen GW, Chen YA, Chang HY, Huang TC, Chen TY. Combined impact of high-pressure processing and slightly acidic electrolysed water on Listeria monocytogenes proteomes. Food Res Int 2021; 147:110494. [PMID: 34399490 DOI: 10.1016/j.foodres.2021.110494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022]
Abstract
Slightly acidic electrolysed water (SAEW) and high-pressure processing (HPP) are well-established non-thermal preservation technologies. This study investigated the deactivation mechanisms of Listeria monocytogenes by label-free quantitative proteomics analysis. Samples were treated through HPP (300 MPa for 3 min), SAEW (20 ppm available chlorine concentration), and their combinations. The KEGG pathway analysis found SAEW + HPP induced differentially expressed proteins (DEPs) associated to biofunctions of ribosomes, secondary metabolite biosynthesis, microbial metabolism in diverse environments, carbon metabolism, and biosynthesis of amino acid and aminoacyl-transfer RNA. The results showed these non-thermal treatments were able to induce the shifting of ribosome biogenesis to initiate translation in L. monocytogenes. During protein translation, the initiation stage was upregulated. However, subsequent elongation, termination, and recycling of used ribosomes were retarded. Comparing various treatments, the combination of hurdles showed greater deactivation of L. monocytogenes than any single one. The approaches developed in this study provided crucial information for minimally processing in the food industries on the application of foodborne listeriosis prevention.
Collapse
Affiliation(s)
- Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yi-An Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hsin-Yi Chang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tai-Yuan Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
10
|
Yang H, He M, Wu C. Cross protection of lactic acid bacteria during environmental stresses: Stress responses and underlying mechanisms. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Zhao H, Yuan L, Hu K, Liu L, Peng S, Li H, Wang H. Heterologous expression of ctsR from Oenococcus oeni enhances the acid-ethanol resistance of Lactobacillus plantarum. FEMS Microbiol Lett 2019; 366:5561440. [DOI: 10.1093/femsle/fnz192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/03/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Oenococcus oeni is a lactic acid bacterium that is widely used in wine-making to conduct malolactic fermentation (MLF). During MLF, O. oeni undergoes acid and ethanol stress that impairs its growth. In order to investigate the role that the ctsR gene plays in acid-ethanol stress, the ctsR gene from O. oeni was expressed heterologously in L. plantarum. The transcription level of the ctsR gene and 10 additional stress response genes in L. plantarum were analyzed by RT-qPCR. Physiological assays to assess ROS accumulation, cell membrane integrity, intracellular ATP and GSH levels, Ca2+/Mg2+-ATPase and Na+/K+-ATPase activities were also performed. Results showed that the recombinant strain WCFS1-CtsR exhibited stronger growth performance than the control strain WCFS1-Vector, and the expression of ctsR, clp, and hsp genes were significantly increased under acid-ethanol stress. Furthermore, WCFS1-CtsR displayed 1.08-, and 1.39-fold higher ATP and GSH concentrations, respectively, compared to the corresponding values for WCFS1-Vector under acid-ethanol stress. ROS accumulation and PI value of WCFS1-CtsR were decreased by 46.52% and 42.80%, respectively, compared to the control strain. In addition, the two ATPase activities in WCFS1-CtsR increased significantly compared with WCFS1-Vector. This is the first report demonstrating that ctsR gene enhances the acid-ethanol tolerance of L. plantarum.
Collapse
Affiliation(s)
- Hongyu Zhao
- College of Enology, Northwest A & F University, Yangling, China
| | - Lin Yuan
- College of Enology, Northwest A & F University, Yangling, China
| | - Kai Hu
- College of Enology, Northwest A & F University, Yangling, China
| | - Longxiang Liu
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, Binzhou, China
| | - Shuai Peng
- College of Enology, Northwest A & F University, Yangling, China
| | - Hua Li
- College of Enology, Northwest A & F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Weinan, China
| | - Hua Wang
- College of Enology, Northwest A & F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Weinan, China
| |
Collapse
|
12
|
Zhao H, Liu L, Peng S, Yuan L, Li H, Wang H. Heterologous Expression of Argininosuccinate Synthase From Oenococcus oeni Enhances the Acid Resistance of Lactobacillus plantarum. Front Microbiol 2019; 10:1393. [PMID: 31293541 PMCID: PMC6598401 DOI: 10.3389/fmicb.2019.01393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023] Open
Abstract
Oenococcus oeni can survive well in wine (an acid-stress environment) and dominate malolactic fermentation (MLF). To demonstrate a possible role of argininosuccinate synthase gene (argG) in the acid tolerance response of O. oeni, a related argG gene was inserted into a plasmid pMG36e and heterologously expressed in Lactobacillus plantarum SL09, a wine isolate belonging to a species of relevant importance in MLF. The expression levels of the argG gene in L. plantarum were analyzed by RT-qPCR, argininosuccinate synthase (ASS) activity and cell properties (amino acids, pH, H+-ATPase activity, and ATP levels) were determined at pH 3.7 in comparison with that at pH 6.3. Results showed that the recombinant strain L. plantarum SL09 (pMG36eargG) exhibited stronger growth performance compared with the control strain (without argG gene), and the expression levels of hsp1, cfa, atp, the citrate and malate metabolic genes were apparently increased under acid stress. In addition, the recombinant strain exhibited 11.0-, 2.0-, 1.9-fold higher ASS activity, H+-ATPase activity and intracellular ATP level, compared with the corresponding values for control strain during acid-stresses condition, which may take responsible for the acid tolerance enhancement of the recombinant strain. This is the first work report on heterologous expression of argG gene, and the results presented in this study will be beneficial for the research on acid stress response of O. oeni.
Collapse
Affiliation(s)
- Hongyu Zhao
- College of Enology, Northwest A&F University, Yangling, China
| | - Longxiang Liu
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, Binzhou, China
| | - Shuai Peng
- College of Enology, Northwest A&F University, Yangling, China
| | - Lin Yuan
- College of Enology, Northwest A&F University, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China.,Heyang Experimental and Demonstrational Stations for Grape, Weinan, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China.,Heyang Experimental and Demonstrational Stations for Grape, Weinan, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|