1
|
Maurizio M, Masid M, Woods K, Caldelari R, Doench JG, Naguleswaran A, Joly D, González-Fernández M, Zemp J, Borteele M, Hatzimanikatis V, Heussler V, Rottenberg S, Olias P. Host cell CRISPR genomics and modelling reveal shared metabolic vulnerabilities in the intracellular development of Plasmodium falciparum and related hemoparasites. Nat Commun 2024; 15:6145. [PMID: 39034325 PMCID: PMC11271486 DOI: 10.1038/s41467-024-50405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Parasitic diseases, particularly malaria (caused by Plasmodium falciparum) and theileriosis (caused by Theileria spp.), profoundly impact global health and the socioeconomic well-being of lower-income countries. Despite recent advances, identifying host metabolic proteins essential for these auxotrophic pathogens remains challenging. Here, we generate a novel metabolic model of human hepatocytes infected with P. falciparum and integrate it with a genome-wide CRISPR knockout screen targeting Theileria-infected cells to pinpoint shared vulnerabilities. We identify key host metabolic enzymes critical for the intracellular survival of both of these lethal hemoparasites. Remarkably, among the metabolic proteins identified by our synergistic approach, we find that host purine and heme biosynthetic enzymes are essential for the intracellular survival of P. falciparum and Theileria, while other host enzymes are only essential under certain metabolic conditions, highlighting P. falciparum's adaptability and ability to scavenge nutrients selectively. Unexpectedly, host porphyrins emerge as being essential for both parasites. The shared vulnerabilities open new avenues for developing more effective therapies against these debilitating diseases, with the potential for broader applicability in combating apicomplexan infections.
Collapse
Affiliation(s)
- Marina Maurizio
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Maria Masid
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne and Lausanne University Teaching Hospital (CHUV), Lausanne, Switzerland
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kerry Woods
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Denis Joly
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Jonas Zemp
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Mélanie Borteele
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
2
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
3
|
de Korne CM, van Schuijlenburg R, Sijtsma JC, de Bes HM, Baalbergen E, Azargoshasb S, van Oosterom MN, McCall MBB, van Leeuwen FWB, Roestenberg M. Sporozoite motility as a quantitative readout for anti-CSP antibody inhibition. Sci Rep 2022; 12:17194. [PMID: 36229488 PMCID: PMC9561690 DOI: 10.1038/s41598-022-22154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
Antibodies can prevent malaria by neutralizing the infectious Plasmodium falciparum sporozoites (SPZ) before they establish an infection in the liver. Circumsporozoite protein (CSP), the most abundant surface protein of SPZ is the leading candidate for passive (and subunit) immunization approaches against malaria. Comprehensive assessment of the parasite-inhibitory capacity of anti-CSP monoclonal antibodies (mAbs) is an important step in advancing CSP-based immunization strategies. In this study, we employed a quantitative imaging-based motility assay to quantify the effect of anti-CSP mAbs on SPZ motility, both in vitro and in human skin.Our assay provided a quantitative measure of mAb parasite-inhibitory capacity through measurement of the half-maximal motility inhibitory concentration (IC50M) value for anti-CSP mAbs (IC50M 2A10: 24 nM, IC50M 3SP2: 71 nM). We found a sevenfold discrepancy between the IC50M and the binding saturation concentration measured by ELISA, possibly related to the observed shedding of CSP-mAb complexes during SPZ movement. In a subset of SPZ (5%), in vitro motility was unaffected by the presence of 2A10 while 3SP2 was able to completely block movement. In our ex vivo skin explant model, SPZ proved less susceptible to anti-CSP mAbs compared to SPZ in an in vitro environment. By quantitatively assessing motility, we created a valuable tool that can be used for comprehensive assessment of anti-CSP mAb potency. Insight that will help deepen our understanding of anti-CSP mAb potency and guide selection of the most promising anti-CSP mAbs for downstream clinical development.
Collapse
Affiliation(s)
- C M de Korne
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - R van Schuijlenburg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - J C Sijtsma
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - H M de Bes
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - E Baalbergen
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - S Azargoshasb
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - M N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - M B B McCall
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - F W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - M Roestenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
4
|
Valenciano AL, Gomez-Lorenzo MG, Vega-Rodríguez J, Adams JH, Roth A. In vitro models for human malaria: targeting the liver stage. Trends Parasitol 2022; 38:758-774. [PMID: 35780012 PMCID: PMC9378454 DOI: 10.1016/j.pt.2022.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
The Plasmodium liver stage represents a vulnerable therapeutic target to prevent disease progression as the parasite resides in the liver before clinical representation caused by intraerythrocytic development. However, most antimalarial drugs target the blood stage of the parasite's life cycle, and the few drugs that target the liver stage are lethal to patients with a glucose-6-phosphate dehydrogenase deficiency. Furthermore, implementation of in vitro liver models to study and develop novel therapeutics against the liver stage of human Plasmodium species remains challenging. In this review, we focus on the progression of in vitro liver models developed for human Plasmodium spp. parasites, provide a brief review on important assay requirements, and lastly present recommendations to improve models to enhance the discovery process of novel preclinical therapeutics.
Collapse
Affiliation(s)
- Ana Lisa Valenciano
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Maria G Gomez-Lorenzo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
5
|
Pengsart W, Kulkeaw K. An Optical and Chemiluminescence Assay for Assessing the Cytotoxicity of Balamuthia mandrillaris against Human Neurospheroids. Bioengineering (Basel) 2022; 9:bioengineering9070330. [PMID: 35877381 PMCID: PMC9312303 DOI: 10.3390/bioengineering9070330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
A spheroid is a cell aggregate in a three-dimensional context; thereby, it recapitulates the cellular architecture in human tissue. However, the utility of spheroids as an assay for host–parasite interactions remains unexplored. This study demonstrates the potential use of neurospheroids for assessing the cytotoxicity of the life-threatening pathogenic amoeba Balamuthia mandrillaris. The neuroblastoma SH-SY5Y cells formed a spheroid in a hanging drop of culture medium. Cellular damage caused by B. mandrillaris trophozoites on human neuronal spheroids was observed using microscopic imaging and ATP detection. B. mandrillaris trophozoites rapidly caused a decrease in ATP production in the spheroid, leading to loss of neurospheroid integrity. Moreover, 3D confocal microscopy imaging revealed interactions between the trophozoites and SH-SY5Y neuronal cells in the outer layer of the neurospheroid. In conclusion, the neurospheroid allows the assessment of host cell damage in a simple and quantitative manner.
Collapse
Affiliation(s)
- Worakamol Pengsart
- Graduate Study School, Faculty of Medicine Siriraj Hospital, Mahidol University, Nakhonpathom 73170, Thailand;
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-800-517-673
| |
Collapse
|
6
|
Aparici Herraiz I, Caires HR, Castillo-Fernández Ó, Sima N, Méndez-Mora L, Risueño RM, Sattabongkot J, Roobsoong W, Hernández-Machado A, Fernandez-Becerra C, Barrias CC, del Portillo HA. Advancing Key Gaps in the Knowledge of Plasmodium vivax Cryptic Infections Using Humanized Mouse Models and Organs-on-Chips. Front Cell Infect Microbiol 2022; 12:920204. [PMID: 35873153 PMCID: PMC9302440 DOI: 10.3389/fcimb.2022.920204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.
Collapse
Affiliation(s)
- Iris Aparici Herraiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Hugo R. Caires
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Óscar Castillo-Fernández
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Núria Sima
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Lourdes Méndez-Mora
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aurora Hernández-Machado
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
- Centre de Recerca Matemàtica (CRM), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Cristina C. Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Hernando A. del Portillo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- *Correspondence: Hernando A. del Portillo,
| |
Collapse
|
7
|
Ramírez-Flores CJ, Tibabuzo Perdomo AM, Gallego-López GM, Knoll LJ. Transcending Dimensions in Apicomplexan Research: from Two-Dimensional to Three-Dimensional In Vitro Cultures. Microbiol Mol Biol Rev 2022; 86:e0002522. [PMID: 35412359 PMCID: PMC9199416 DOI: 10.1128/mmbr.00025-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum are among the most successful pathogens known in nature. They can infect a wide range of hosts, often remain undetected by the immune system, and cause acute and chronic illness. In this phylum, we can find parasites of human and veterinary health relevance, such as Toxoplasma, Plasmodium, Cryptosporidium, and Eimeria. There are still many unknowns about the biology of these pathogens due to the ethical and practical issues of performing research in their natural hosts. Animal models are often difficult or nonexistent, and as a result, there are apicomplexan life cycle stages that have not been studied. One recent alternative has been the use of three-dimensional (3D) systems such as organoids, 3D scaffolds with different matrices, microfluidic devices, organs-on-a-chip, and other tissue culture models. These 3D systems have facilitated and expanded the research of apicomplexans, allowing us to explore life stages that were previously out of reach and experimental procedures that were practically impossible to perform in animal models. Human- and animal-derived 3D systems can be obtained from different organs, allowing us to model host-pathogen interactions for diagnostic methods and vaccine development, drug testing, exploratory biology, and other applications. In this review, we summarize the most recent advances in the use of 3D systems applied to apicomplexans. We show the wide array of strategies that have been successfully used so far and apply them to explore other organisms that have been less studied.
Collapse
Affiliation(s)
- Carlos J. Ramírez-Flores
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Andrés M. Tibabuzo Perdomo
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Gina M. Gallego-López
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Loubens M, Vincensini L, Fernandes P, Briquet S, Marinach C, Silvie O. Plasmodium sporozoites on the move: Switching from cell traversal to productive invasion of hepatocytes. Mol Microbiol 2021; 115:870-881. [PMID: 33191548 PMCID: PMC8247013 DOI: 10.1111/mmi.14645] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Parasites of the genus Plasmodium, the etiological agent of malaria, are transmitted through the bite of anopheline mosquitoes, which deposit sporozoites into the host skin. Sporozoites migrate through the dermis, enter the bloodstream, and rapidly traffic to the liver. They cross the liver sinusoidal barrier and traverse several hepatocytes before switching to productive invasion of a final one for replication inside a parasitophorous vacuole. Cell traversal and productive invasion are functionally independent processes that require proteins secreted from specialized secretory organelles known as micronemes. In this review, we summarize the current understanding of how sporozoites traverse through cells and productively invade hepatocytes, and discuss the role of environmental sensing in switching from a migratory to an invasive state. We propose that timely controlled secretion of distinct microneme subsets could play a key role in successful migration and infection of hepatocytes. A better understanding of these essential biological features of the Plasmodium sporozoite may contribute to the development of new strategies to fight against the very first and asymptomatic stage of malaria.
Collapse
Affiliation(s)
- Manon Loubens
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Laetitia Vincensini
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Priyanka Fernandes
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Sylvie Briquet
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Carine Marinach
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Olivier Silvie
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| |
Collapse
|
9
|
Arez F, Rodrigues AF, Brito C, Alves PM. Bioengineered Liver Cell Models of Hepatotropic Infections. Viruses 2021; 13:773. [PMID: 33925701 PMCID: PMC8146083 DOI: 10.3390/v13050773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis viruses and liver-stage malaria are within the liver infections causing higher morbidity and mortality rates worldwide. The highly restricted tropism of the major human hepatotropic pathogens-namely, the human hepatitis B and C viruses and the Plasmodium falciparum and Plasmodium vivax parasites-has hampered the development of disease models. These models are crucial for uncovering the molecular mechanisms underlying the biology of infection and governing host-pathogen interaction, as well as for fostering drug development. Bioengineered cell models better recapitulate the human liver microenvironment and extend hepatocyte viability and phenotype in vitro, when compared with conventional two-dimensional cell models. In this article, we review the bioengineering tools employed in the development of hepatic cell models for studying infection, with an emphasis on 3D cell culture strategies, and discuss how those tools contributed to the level of recapitulation attained in the different model layouts. Examples of host-pathogen interactions uncovered by engineered liver models and their usefulness in drug development are also presented. Finally, we address the current bottlenecks, trends, and prospect toward cell models' reliability, robustness, and reproducibility.
Collapse
MESH Headings
- Animals
- Bioengineering/methods
- Cell Culture Techniques
- Disease Models, Animal
- Disease Susceptibility
- Drug Discovery
- Hepatitis/drug therapy
- Hepatitis/etiology
- Hepatitis/metabolism
- Hepatitis/pathology
- Hepatitis, Viral, Human/etiology
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Hepatocytes/metabolism
- Hepatocytes/parasitology
- Hepatocytes/virology
- Host-Pathogen Interactions
- Humans
- Liver/metabolism
- Liver/parasitology
- Liver/virology
- Liver Diseases, Parasitic/etiology
- Liver Diseases, Parasitic/metabolism
- Liver Diseases, Parasitic/pathology
Collapse
Affiliation(s)
- Francisca Arez
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F. Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (F.A.); (A.F.R.); (C.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
10
|
Mukherjee P, Burgio G, Heitlinger E. Dual RNA Sequencing Meta-analysis in Plasmodium Infection Identifies Host-Parasite Interactions. mSystems 2021; 6:e00182-21. [PMID: 33879496 PMCID: PMC8546971 DOI: 10.1128/msystems.00182-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Dual RNA sequencing (RNA-Seq) is the simultaneous transcriptomic analysis of interacting symbionts, for example, in malaria. Potential cross-species interactions identified by correlated gene expression might highlight interlinked signaling, metabolic, or gene regulatory pathways in addition to physically interacting proteins. Often, malaria studies address one of the interacting organisms-host or parasite-rendering the other "contamination." Here we perform a meta-analysis using such studies for cross-species expression analysis. We screened experiments for gene expression from host and Plasmodium. Out of 171 studies in Homo sapiens, Macaca mulatta, and Mus musculus, we identified 63 potential studies containing host and parasite data. While 16 studies (1,950 samples) explicitly performed dual RNA-Seq, 47 (1,398 samples) originally focused on one organism. We found 915 experimental replicates from 20 blood studies to be suitable for coexpression analysis and used orthologs for meta-analysis across different host-parasite systems. Centrality metrics from the derived gene expression networks correlated with gene essentiality in the parasites. We found indications of host immune response to elements of the Plasmodium protein degradation system, an antimalarial drug target. We identified well-studied immune responses in the host with our coexpression networks, as our approach recovers known broad processes interlinked between hosts and parasites in addition to individual host and parasite protein associations. The set of core interactions represents commonalities between human malaria and its model systems for prioritization in laboratory experiments. Our approach might also allow insights into the transferability of model systems for different pathways in malaria studies.IMPORTANCE Malaria still causes about 400,000 deaths a year and is one of the most studied infectious diseases. The disease is studied in mice and monkeys as lab models to derive potential therapeutic intervention in human malaria. Interactions between Plasmodium spp. and its hosts are either conserved across different host-parasite systems or idiosyncratic to those systems. Here we use correlation of gene expression from different RNA-Seq studies to infer common host-parasite interactions across human, mouse, and monkey studies. First, we find a set of very conserved interactors, worth further scrutiny in focused laboratory experiments. Second, this work might help assess to which extent experiments and knowledge on different pathways can be transferred from models to humans for potential therapy.
Collapse
Affiliation(s)
- Parnika Mukherjee
- Department of Molecular Parasitology, Humboldt University, Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Gaétan Burgio
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Humboldt University, Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| |
Collapse
|