1
|
Pal S, Yuvaraj R, Krishnan H, Venkatraman B, Abraham J, Gopinathan A. Unraveling radiation resistance strategies in two bacterial strains from the high background radiation area of Chavara-Neendakara: A comprehensive whole genome analysis. PLoS One 2024; 19:e0304810. [PMID: 38857267 PMCID: PMC11164402 DOI: 10.1371/journal.pone.0304810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/18/2024] [Indexed: 06/12/2024] Open
Abstract
This paper reports the results of gamma irradiation experiments and whole genome sequencing (WGS) performed on vegetative cells of two radiation resistant bacterial strains, Metabacillus halosaccharovorans (VITHBRA001) and Bacillus paralicheniformis (VITHBRA024) (D10 values 2.32 kGy and 1.42 kGy, respectively), inhabiting the top-ranking high background radiation area (HBRA) of Chavara-Neendakara placer deposit (Kerala, India). The present investigation has been carried out in the context that information on strategies of bacteria having mid-range resistance for gamma radiation is inadequate. WGS, annotation, COG and KEGG analyses and manual curation of genes helped us address the possible pathways involved in the major domains of radiation resistance, involving recombination repair, base excision repair, nucleotide excision repair and mismatch repair, and the antioxidant genes, which the candidate could activate to survive under ionizing radiation. Additionally, with the help of these data, we could compare the candidate strains with that of the extremely radiation resistant model bacterium Deinococccus radiodurans, so as to find the commonalities existing in their strategies of resistance on the one hand, and also the rationale behind the difference in D10, on the other. Genomic analysis of VITHBRA001 and VITHBRA024 has further helped us ascertain the difference in capability of radiation resistance between the two strains. Significantly, the genes such as uvsE (NER), frnE (protein protection), ppk1 and ppx (non-enzymatic metabolite production) and those for carotenoid biosynthesis, are endogenous to VITHBRA001, but absent in VITHBRA024, which could explain the former's better radiation resistance. Further, this is the first-time study performed on any bacterial population inhabiting an HBRA. This study also brings forward the two species whose radiation resistance has not been reported thus far, and add to the knowledge on radiation resistant capabilities of the phylum Firmicutes which are abundantly observed in extreme environment.
Collapse
Affiliation(s)
- Sowptika Pal
- Molecular Endocrinology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramani Yuvaraj
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Hari Krishnan
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Balasubramanian Venkatraman
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Jayanthi Abraham
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anilkumar Gopinathan
- Molecular Endocrinology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Sharma M, Dwivedi P, Joshi V, Singh P. Novel mutations found in Mycobacterium leprae DNA repair gene nth from central India. J Infect Chemother 2024; 30:531-535. [PMID: 38141720 DOI: 10.1016/j.jiac.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION The importance of DNA repair enzymes in maintaining genomic integrity is highlighted by the hypothesis that DNA damage by reactive oxygen/nitrogen species produced inside the host cell is essential for the mutagenesis process. Endonuclease III (Nth), formamidopyrimide (Fpg) and endonuclease VIII (Nei) DNA glycosylases are essential components of the bacterial base excision repair process. Mycobacterium leprae lost both fpg/nei genes during the reductive evolution event and only has the nth (ML2301) gene. This study aims to characterize the mutations in the nth gene of M. leprae strains and explore its correlation with drug-resistance. METHOD A total of 91 M. leprae positive DNA samples extracted from skin biopsy samples of newly diagnosed leprosy patients from NSCB Hospital Jabalpur were assessed for the nth gene as well as drug resistance-associated loci of the rpoB, gyrA and folP1 genes through PCR followed by Sanger sequencing. RESULTS Of these 91 patients, a total of two insertion frameshift mutations, two synonymous and seven nonsynonymous mutations were found in nth in seven samples. Sixteen samples were found to be resistant to ofloxacin and one was found to be dapsone resistant as per the known DRDR mutations. No mutations were found in the rpoB region. Interestingly, none of the nth mutations were identified in the drug-resistant associated samples. CONCLUSION The in-silico structural analysis of the non-synonymous mutations in the Nth predicted five of them were to be deleterious. Our results suggest that the mutations in the nth gene may be potential markers for phylogenetic and epidemiological studies.
Collapse
Affiliation(s)
- Mukul Sharma
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Purna Dwivedi
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India; The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Vandana Joshi
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pushpendra Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India.
| |
Collapse
|
3
|
Soro AB, Ekhlas D, Marmion M, Scannell AGM, Whyte P, Bolton DJ, Burgess CM, Tiwari BK. Investigation of differences in susceptibility of Campylobacter jejuni strains to UV light-emitting diode (UV-LED) technology. Sci Rep 2023; 13:9459. [PMID: 37301882 PMCID: PMC10257703 DOI: 10.1038/s41598-023-35315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Campylobacter jejuni remains a high priority in public health worldwide. Ultraviolet light emitting-diode technology (UV-LED) is currently being explored to reduce Campylobacter levels in foods. However, challenges such as differences in species and strain susceptibilities, effects of repeated UV-treatments on the bacterial genome and the potential to promote antimicrobial cross-protection or induce biofilm formation have arisen. We investigated the susceptibility of eight C. jejuni clinical and farm isolates to UV-LED exposure. UV light at 280 nm induced different inactivation kinetics among strains, of which three showed reductions greater than 1.62 log CFU/mL, while one strain was particularly resistant to UV light with a maximum reduction of 0.39 log CFU/mL. However, inactivation was reduced by 0.46-1.03 log CFU/mL in these three strains and increased to 1.20 log CFU/mL in the resistant isolate after two repeated-UV cycles. Genomic changes related to UV light exposure were analysed using WGS. C. jejuni strains with altered phenotypic responses following UV exposure were also found to have changes in biofilm formation and susceptibility to ethanol and surface cleaners.
Collapse
Affiliation(s)
- Arturo B Soro
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8, Ireland
- Infectious Diseases in Humans, Service Foodborne Pathogens, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Maitiú Marmion
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Ireland
- UCD Centre for Food Safety, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8, Ireland
- UCD Centre for Food Safety, University College Dublin, Belfield, D04 V1W8, Ireland
- UCD Institute of Food and Health, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8, Ireland
| | - Declan J Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland
| | | | - Brijesh K Tiwari
- Teagasc Food Research Centre, Ashtown, D15 DY05, Dublin, Ireland.
- Teagasc Food Research Centre, Ashtown, Dublin, D15 DY05, Ireland.
| |
Collapse
|
4
|
Ramamurthy T, Ghosh A, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front Cell Infect Microbiol 2022; 12:952491. [PMID: 36506027 PMCID: PMC9727169 DOI: 10.3389/fcimb.2022.952491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Thandavarayan Ramamurthy,
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-inchi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR- National Institute of Cholera and Enteric Diseases, Kolkata, India,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Wu X, Chen Y, Zhang Y, Shan Y, Peng Z, Gu B, Yang H. Au Nanoclusters Ameliorate Shigella Infectious Colitis by Inducing Oxidative Stress. Int J Nanomedicine 2021; 16:4545-4557. [PMID: 34267512 PMCID: PMC8275169 DOI: 10.2147/ijn.s315481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Shigella infection has always been a global burden, and it particularly threatens children between the ages of 1 and 5 years. Economically underdeveloped countries are dominated by Shigella flexneri infection. The most effective method to treat Shigella is antibiotics, but with the abuse of antibiotics and the prevalence of multidrug resistance, we urgently need a relatively safe non-antibiotic treatment to replace it. Ultrasmall Au nanoclusters (NCs) have special physical and chemical properties and can better interact with and be internalized by bacteria to disrupt the metabolic balance. The purpose of this study was to explore whether Au NCs may be a substitute for antibiotics to treat Shigella infections. Methods Au NCs and Shigella Sf301, R2448, and RII-1 were cocultured in vitro to evaluate the bactericidal ability of Au NCs. The degree of damage and mode of action of Au NCs in Shigella were clearly observed in images of scanning electron microscopy (SEM). In vivo experiments were conducted to observe the changes in body weight, clinical disease activity index (DAI) and colon (including length and histopathological sections) of mice treated with Au NCs. The effect of Au NCs was analysed by measuring the content of lipocalin-2 (LCN2) and Shigella in faeces. Next, the changes in Shigella biofilm activity, the release of reactive oxygen species (ROS), the changes in metabolism-related and membrane-related genes, and the effect of Au NCs on the body weight of mice were determined to further analyse the mechanism of action and effect. Results Au NCs (100 μM) interfered with oxidative metabolism genes, induced a substantial increase in ROS levels, interacted with the cell membrane to destroy it, significantly killed Shigella, and effectively alleviated the intestinal damage caused by Shigella in mice. The activity of the biofilm formed by Shigella was reduced. Conclusion The effective antibacterial effect and good safety suggest that Au NCs represent a good potential alternative to antibiotics to treat Shigella infections.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yongyan Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital of Nanjing University School of Medicine, Nanjing, 210008, People's Republic of China
| | - Yunjie Shan
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zhiyue Peng
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510000, People's Republic of China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| |
Collapse
|