1
|
Lin D, Song Q, Liu J, Chen F, Zhang Y, Wu Z, Sun X, Wu X. Potential Gut Microbiota Features for Non-Invasive Detection of Schistosomiasis. Front Immunol 2022; 13:941530. [PMID: 35911697 PMCID: PMC9330540 DOI: 10.3389/fimmu.2022.941530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbiota has been identified as a predictive biomarker for various diseases. However, few studies focused on the diagnostic accuracy of gut microbiota derived-signature for predicting hepatic injuries in schistosomiasis. Here, we characterized the gut microbiomes from 94 human and mouse stool samples using 16S rRNA gene sequencing. The diversity and composition of gut microbiomes in Schistosoma japonicum infection-induced disease changed significantly. Gut microbes, such as Bacteroides, Blautia, Enterococcus, Alloprevotella, Parabacteroides and Mucispirillum, showed a significant correlation with the level of hepatic granuloma, fibrosis, hydroxyproline, ALT or AST in S. japonicum infection-induced disease. We identified a range of gut bacterial features to distinguish schistosomiasis from hepatic injuries using the random forest classifier model, LEfSe and STAMP analysis. Significant features Bacteroides, Blautia, and Enterococcus and their combinations have a robust predictive accuracy (AUC: from 0.8182 to 0.9639) for detecting liver injuries induced by S. japonicum infection in humans and mice. Our study revealed associations between gut microbiota features and physiopathology and serological shifts of schistosomiasis and provided preliminary evidence for novel gut microbiota-derived features for the non-invasive detection of schistosomiasis.
Collapse
Affiliation(s)
- Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
- *Correspondence: Datao Lin, ; Xi Sun, ; Xiaoying Wu,
| | - Qiuyue Song
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Department of Clinical Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiahua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yishu Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- *Correspondence: Datao Lin, ; Xi Sun, ; Xiaoying Wu,
| | - Xiaoying Wu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Datao Lin, ; Xi Sun, ; Xiaoying Wu,
| |
Collapse
|
2
|
Cao D, Pang M, Wu D, Chen G, Peng X, Xu K, Fan H. Alterations in the Gut Microbiota of Tibetan Patients With Echinococcosis. Front Microbiol 2022; 13:860909. [PMID: 35615499 PMCID: PMC9126193 DOI: 10.3389/fmicb.2022.860909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 01/30/2023] Open
Abstract
There are two main types of echinococcosis, namely alveolar echinococcosis (AE) and cystic echinococcosis (CE). They are zoonotic parasitic diseases caused by the metacestodes of Echinococcus multilocularis and Echinococcus granulosus. In order to explore the gut microbiome composition of patients with echinococcosis, we analyzed fecal samples of seven patients with AE, six patients with CE, and 13 healthy individuals from the Qinghai-Tibetan Plateau, China. Using metagenomic next-generation sequencing, we identified fecal bacteria in the patients with AE and CE. The gut microbiota was analyzed by next-generation metagenomic sequencing (mNGS) to compare patients with either AE or CE against healthy individuals. We found there were some differences between them in abundant bacteria. Our results led to five findings: (1) Between patients with echinococcosis and healthy individuals, the differential bacteria were from four phyla: Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria. (2) Rothia mucilaginosa, Veillonella dispar, Veillonella atypica, Streptococcus parasanguinis, Streptococcus salivarius, and Alistipes finegoldii were abundant in the feces of patients with AE. (3) Bacteroides dorei, Parabacteroides distasonis, Escherichia sp_E4742, and Methanobrevibacter smithii were abundant in the feces of the patients with CE. (4) At the phylum and class level, compared to the AE group, the healthy group was characterized by higher numbers of Actinobacteria. (5) At the family level, Lachnospiraceae and Eubacteriaceae were more abundant in the feces of healthy individuals than in AE patients. The genera Coprococcus, Eubacterium, and Bilophia were more abundant in the healthy group, while the genus Rothia was more abundant in the AE group. The results of this study enrich our understanding of the gut microbiome composition of patients with AE and CE in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Deping Cao
- The Department of Human Parasitology, Basic Medical College of Guilin Medical University, Guilin, China
| | - Mingquan Pang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, China
- The Key Echinococcosis Laboratory, Affiliated Hospital of Qinghai University, Xining, China
| | - Defang Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, China
- The Key Echinococcosis Laboratory, Affiliated Hospital of Qinghai University, Xining, China
| | - Gen Chen
- The Department of Human Parasitology, Basic Medical College of Guilin Medical University, Guilin, China
| | - Xiaohong Peng
- The Department of Human Parasitology, Basic Medical College of Guilin Medical University, Guilin, China
| | - Kai Xu
- The Key Echinococcosis Laboratory, Affiliated Hospital of Qinghai University, Xining, China
| | - Haining Fan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, China
- The Key Echinococcosis Laboratory, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
3
|
Fahmy AM, William S, Hegab A, Tm D. Schistosomicidal and hepatoprotective activity of gamma-aminobutyric acid (GABA) alone or combined with praziquantel against Schistosoma mansoni infection in murine model. Exp Parasitol 2022; 238:108260. [PMID: 35447136 DOI: 10.1016/j.exppara.2022.108260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 04/03/2022] [Accepted: 04/10/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy of gamma-aminobutyric acid (GABA) alone or combined with praziquantel (PZQ) against Schistosoma (S) mansoni infection in a murine model. METHODS Five groups, 8 mice each, were studied; GI served as normal controls; GII: S. mansoni-infected control group and the other three S. mansoni-infected groups received drug regimens for 5 consecutive days as follows GIII: Infected-PZQ treated group (200 mg/kg/day); GIV: Infected-GABA treated group (300 mg/kg/day) and GV: Infected-PZQ-GABA treated group (100 mg/kg/day for each drug). All animal groups were sacrificed two weeks later and different parasitological, histopathological and biochemical parameters were assessed. RESULTS Combined GABA-PZQ treated group recorded the highest significant reduction in all parasitological, histopathological and biochemical parameters followed by PZQ and finally GABA groups. Combined GABA-PZQ treatment led to the complete disappearance of immature eggs and marked reduction of deposited eggs in liver tissues and improved liver pathology. Significant improvement in hepatic oxidative stress levels, serum albumin and total protein in response to GABA treatment alone or combined with PZQ. CONCLUSION GABA had schistosomicidal, hepatoprotective and antioxidant activities against S. mansoni infection, GABA disrupted parasite pairing and activity, reduced the total number of worms recovered and the number of ova in the tissues. GABA may be considered an adjuvant therapy to potentiate PZQ antiparasitic activity and eradicate infection-induced liver damage and oxidative stress.
Collapse
Affiliation(s)
- Azza Moustafa Fahmy
- Department of Immunology and Drug Evaluation, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt.
| | - Samia William
- Department of Immunology and Drug Evaluation, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Amany Hegab
- Department of Developmental Pharmacology, National Organization for Drug Control and Research, Egypt
| | - Diab Tm
- Department of Immunology and Drug Evaluation, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| |
Collapse
|
4
|
Xiaoting L, Shanshan L, Qiuhong W, Weichen D, Haixue K. Metagenomics approach the intestinal microbiome structure and function in the anti-H1N1 of a traditional chinese medicine acid polysaccharide. Microb Pathog 2020; 147:104351. [PMID: 32634615 DOI: 10.1016/j.micpath.2020.104351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022]
Abstract
Ephedra sinica Stapf polysaccharide is a pure acidic uniform polysaccharide extracted from the traditional Chinese medicine Ephedra sinica Stapf. In our past research, it was found that it has anti-inflammatory response and suppresses immunity. Therefore, in this experiment, mice were infected with FM1 virus, treated with Ephedra sinica Stapf polysaccharide, and metagene sequencing was used to sequence the mouse intestinal contents. As a result, we found that Ephedra sinica Stapf polysaccharide has obvious therapeutic effect on acute lung injury caused by H1N1. In the intestinal flora, the abundance of Lactobacillales and Bifidobacteriaceae increased significantly, and the metabolome increased significantly in the KEGG pathway. The intestinal flora may be an important target of Ephedra sinica Stapf polysaccharides metabolism against H1N1.
Collapse
Affiliation(s)
- Lin Xiaoting
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Applied Research in North Medicine, Ministry of Education, Heilongjiang Key Laboratory of Drug Efficacy Study Material of Traditional Chinese Medicine and Natural Product, Harbin, 150040, China.
| | - Liang Shanshan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Applied Research in North Medicine, Ministry of Education, Heilongjiang Key Laboratory of Drug Efficacy Study Material of Traditional Chinese Medicine and Natural Product, Harbin, 150040, China.
| | - Wang Qiuhong
- Guangdong Pharmaceutical University, 510224, China.
| | - Duanmu Weichen
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Applied Research in North Medicine, Ministry of Education, Heilongjiang Key Laboratory of Drug Efficacy Study Material of Traditional Chinese Medicine and Natural Product, Harbin, 150040, China.
| | - Kuang Haixue
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Applied Research in North Medicine, Ministry of Education, Heilongjiang Key Laboratory of Drug Efficacy Study Material of Traditional Chinese Medicine and Natural Product, Harbin, 150040, China.
| |
Collapse
|
5
|
Arora N, Kaur R, Anjum F, Tripathi S, Mishra A, Kumar R, Prasad A. Neglected Agent Eminent Disease: Linking Human Helminthic Infection, Inflammation, and Malignancy. Front Cell Infect Microbiol 2019; 9:402. [PMID: 31867284 PMCID: PMC6909818 DOI: 10.3389/fcimb.2019.00402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Helminthic parasitic infection is grossly prevalent across the globe and is considered a significant factor in human cancer occurrence induced by biological agents. Although only three helminths (Schistosoma haematobium, Clonorchis sinensis, and Opisthorchis viverrini) so far have been directly associated with carcinogenesis; there are evidence suggesting the involvement of other species too. Broadly, human helminthiasis can cause chronic inflammation, genetic instability, and host immune modulation by affecting inter- and intracellular communications, disruption of proliferation-anti-proliferation pathways, and stimulation of malignant stem cell progeny. These changes ultimately lead to tumor development through the secretion of soluble factors that interact with host cells. However, the detailed mechanisms by which helminths introduce and promote malignant transformation of host cells are still not clear. Here, we reviewed the current understanding of immune-pathogenesis of helminth parasites, which have been associated with carcinogenesis, and how these infections initiate carcinogenesis in the host.
Collapse
Affiliation(s)
- Naina Arora
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Rimanpreet Kaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Farhan Anjum
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Shweta Tripathi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Rajiv Kumar
- Institute for Himalayan Bioresource Technology (CSIR), Palampur, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|