1
|
Zhou S, Pan B, Kuang X, Chen S, Liu L, Song Y, Zhao Y, Xu X, Cheng X, Yang J. Characterization and mechanism investigation of salt-activated methionine sulfoxide reductase A from halophiles. iScience 2024; 27:110806. [PMID: 39297162 PMCID: PMC11408995 DOI: 10.1016/j.isci.2024.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Halophiles, thriving in harsh saline environments, capture scientific interest due to their remarkable ability to prosper under extreme salinity. This study unveils the distinct salt-induced activation of methionine sulfoxide reductases (MsrA) from Halobacterium hubeiense, showcasing a significant enhancement in enzymatic activity across various salt concentrations ranging from 0.5 to 3.5 M. This contrasts sharply with the activity profiles of non-halophilic counterparts. Through comprehensive molecular dynamics simulations, we demonstrate that salt ions stabilize and compact the enzyme's structure, notably enhancing its substrate affinity. Mutagenesis analysis further confirms the essential role of salt bridges formed by the basic Arg168 residue in salt-induced activation. Mutating Arg168 to an acidic or neutral residue disrupts salt-induced activation, substantially reducing the enzyme activity under salt conditions. Our research provides evidence of salt-activated MsrA activity in halophiles, elucidating the molecular basis of halophilic enzyme activity in response to salts.
Collapse
Affiliation(s)
- Shihuan Zhou
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Bochen Pan
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoxue Kuang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuhong Chen
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Lianghui Liu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yawen Song
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yuyan Zhao
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xianlin Xu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoling Cheng
- Department of Cell Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiawei Yang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| |
Collapse
|
2
|
Vinces TC, de Souza AS, Carvalho CF, Visnardi AB, Teixeira RD, Llontop EE, Bismara BAP, Vicente EJ, Pereira JO, de Souza RF, Yonamine M, Marana SR, Farah CS, Guzzo CR. Monomeric Esterase: Insights into Cooperative Behavior, Hysteresis/Allokairy. Biochemistry 2024; 63:1178-1193. [PMID: 38669355 DOI: 10.1021/acs.biochem.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Herein, we present a novel esterase enzyme, Ade1, isolated from a metagenomic library of Amazonian dark earths soils, demonstrating its broad substrate promiscuity by hydrolyzing ester bonds linked to aliphatic groups. The three-dimensional structure of the enzyme was solved in the presence and absence of substrate (tributyrin), revealing its classification within the α/β-hydrolase superfamily. Despite being a monomeric enzyme, enzymatic assays reveal a cooperative behavior with a sigmoidal profile (initial velocities vs substrate concentrations). Our investigation brings to light the allokairy/hysteresis behavior of Ade1, as evidenced by a transient burst profile during the hydrolysis of substrates such as p-nitrophenyl butyrate and p-nitrophenyl octanoate. Crystal structures of Ade1, coupled with molecular dynamics simulations, unveil the existence of multiple conformational structures within a single molecular state (E̅1). Notably, substrate binding induces a loop closure that traps the substrate in the catalytic site. Upon product release, the cap domain opens simultaneously with structural changes, transitioning the enzyme to a new molecular state (E̅2). This study advances our understanding of hysteresis/allokairy mechanisms, a temporal regulation that appears more pervasive than previously acknowledged and extends its presence to metabolic enzymes. These findings also hold potential implications for addressing human diseases associated with metabolic dysregulation.
Collapse
Affiliation(s)
- Tania Churasacari Vinces
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Cecília F Carvalho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Aline Biazola Visnardi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Raphael D Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Edgar E Llontop
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Beatriz Aparecida Passos Bismara
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Elisabete J Vicente
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - José O Pereira
- Biotechnology Group, Federal University of Amazonas, Amazonas CEP 69077-000, Brazil
| | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Sandro Roberto Marana
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Chuck Shaker Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Cristiane R Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
3
|
Targeting Multidrug-Recalcitrant Pseudomonas aeruginosa Biofilms: Combined-Enzyme Treatment Enhances Antibiotic Efficacy. Antimicrob Agents Chemother 2023; 67:e0135822. [PMID: 36602373 PMCID: PMC9872604 DOI: 10.1128/aac.01358-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that forms biofilms during infection, resulting in recalcitrance to antibiotic treatment. Biofilm inhibition is a promising research direction for the treatment of biofilm-associated infections. Here, a combined-enzyme biofilm-targeted strategy was put forward for the first time to simultaneously prevent biofilm formation and break down preformed biofilms. The N-acylhomoserine lactonase AidH was used as a quorum-sensing inhibitor and was modified to enhance the inhibitory effect on biofilms by rational design. Mutant AidHA147G exerted maximum activity at the human body temperature and pH and could reduce the expression of virulence factors as well as biofilm-related genes of P. aeruginosa. Subsequently, the P. aeruginosa self-produced glycosyl hydrolase PslG joined with AidHA147G to disrupt biofilms. Interestingly, under the combined-enzyme intervention for P. aeruginosa wild-type strain PAO1 and clinical strains, no biofilm was observed on the bottom of NEST glass-bottom cell culture dishes. The combination strategy also helped multidrug-resistant clinical strains change from resistant to intermediate or sensitive to many antibiotics commonly used in clinical practice. These results demonstrated that the combined-enzyme approach for inhibiting biofilms is a potential clinical treatment for P. aeruginosa infection.
Collapse
|
4
|
Wang D, Cui F, Ren L, Tan X, Li Q, Li J, Li T. Enhancing the Inhibition Potential of AHL Acylase PF2571 against Food Spoilage by Remodeling Its Substrate Scope via a Computationally Driven Protein Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14510-14521. [PMID: 36331356 DOI: 10.1021/acs.jafc.2c05753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The N-acyl homoserine lactone (AHL) acylases are widely used as quorum sensing (QS) blockers to inhibit bacterial food spoilage. However, their substrate specificity for long-chain substrates weakens their efficiency. In this study, a computer-assisted design of AHL acylase PF2571 was performed to modify its substrate scope. The results showed that the variant PF2571H194Y, L221R could effectively quench N-hexanoyl-l-homoserine lactone and N-octanoyl-l-homoserine lactone without impairing its activity against long-chain AHLs. Kinetic analysis of the enzymatic activities further corroborated the observed substrate expansion. The inhibitory activities of this variant were significantly enhanced against the QS phenotype of Aeromonas veronii BY-8, with inhibition rates of 45.67, 78.25, 54.21, and 54.65% against proteases, motility, biofilms, and extracellular polysaccharides, respectively. Results for molecular dynamics simulation showed that the steric hindrance, induced by residue substitution, could have been responsible for the change in substrate scope. This study dramatically improves the practicability of AHL acylase in controlling food spoilage.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
- College of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi214122, China
| | - Fangchao Cui
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Likun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Heilongjiang, Harbin150076, China
| | - Xiqian Tan
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Qiuying Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
- College of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi214122, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Liaoning, Dalian116029, China
| |
Collapse
|
5
|
Lamin A, Kaksonen AH, Cole IS, Chen XB. Quorum sensing inhibitors applications: a new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry 2022; 145:108050. [DOI: 10.1016/j.bioelechem.2022.108050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/21/2022]
|
6
|
Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S, Ray RR. Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Front Microbiol 2021; 12:636588. [PMID: 33717030 PMCID: PMC7947885 DOI: 10.3389/fmicb.2021.636588] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 01/21/2023] Open
Abstract
The emergence of bacterial resistance to antibiotics has led to the search for alternate antimicrobial treatment strategies. Engineered nanoparticles (NPs) for efficient penetration into a living system have become more common in the world of health and hygiene. The use of microbial enzymes/proteins as a potential reducing agent for synthesizing NPs has increased rapidly in comparison to physical and chemical methods. It is a fast, environmentally safe, and cost-effective approach. Among the biogenic sources, fungi and bacteria are preferred not only for their ability to produce a higher titer of reductase enzyme to convert the ionic forms into their nano forms, but also for their convenience in cultivating and regulating the size and morphology of the synthesized NPs, which can effectively reduce the cost for large-scale manufacturing. Effective penetration through exopolysaccharides of a biofilm matrix enables the NPs to inhibit the bacterial growth. Biofilm is the consortia of sessile groups of microbial cells that are able to adhere to biotic and abiotic surfaces with the help extracellular polymeric substances and glycocalyx. These biofilms cause various chronic diseases and lead to biofouling on medical devices and implants. The NPs penetrate the biofilm and affect the quorum-sensing gene cascades and thereby hamper the cell-to-cell communication mechanism, which inhibits biofilm synthesis. This review focuses on the microbial nano-techniques that were used to produce various metallic and non-metallic nanoparticles and their "signal jamming effects" to inhibit biofilm formation. Detailed analysis and discussion is given to their interactions with various types of signal molecules and the genes responsible for the development of biofilm.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Hassan I. Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India
- Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | | | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, Ganjam, Odisha, India
- Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
7
|
Use of Quorum Sensing Inhibition Strategies to Control Microfouling. Mar Drugs 2021; 19:md19020074. [PMID: 33573187 PMCID: PMC7912365 DOI: 10.3390/md19020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Interfering with the quorum sensing bacterial communication systems has been proposed as a promising strategy to control bacterial biofilm formation, a key process in biofouling development. Appropriate in vitro biofilm-forming bacteria models are needed to establish screening methods for innovative anti-biofilm and anti-microfouling compounds. Four marine strains, two Pseudoalteromonas spp. and two Vibrio spp., were selected and studied with regard to their biofilm-forming capacity and sensitivity to quorum sensing (QS) inhibitors. Biofilm experiments were performed using two biofilm cultivation and quantification methods: the xCELLigence® system, which allows online monitoring of biofilm formation, and the active attachment model, which allows refreshment of the culture medium to obtain a strong biofilm that can be quantified with standard staining methods. Although all selected strains produced acyl-homoserine-lactone (AHL) QS signals, only the P. flavipulchra biofilm, measured with both quantification systems, was significantly reduced with the addition of the AHL-lactonase Aii20J without a significant effect on planktonic growth. Two-species biofilms containing P. flavipulchra were also affected by the addition of Aii20J, indicating an influence on the target bacterial strain as well as an indirect effect on the co-cultured bacterium. The use of xCELLigence® is proposed as a time-saving method to quantify biofilm formation and search for eco-friendly anti-microfouling compounds based on quorum sensing inhibition (QSI) strategies. The results obtained from these two in vitro biofilm formation methods revealed important differences in the response of biosensor bacteria to culture medium and conditions, indicating that several strains should be used simultaneously for screening purposes and the cultivation conditions should be carefully optimized for each specific purpose.
Collapse
|
8
|
Billot R, Plener L, Jacquet P, Elias M, Chabrière E, Daudé D. Engineering acyl-homoserine lactone-interfering enzymes toward bacterial control. J Biol Chem 2020; 295:12993-13007. [PMID: 32690609 DOI: 10.1074/jbc.rev120.013531] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Enzymes able to degrade or modify acyl-homoserine lactones (AHLs) have drawn considerable interest for their ability to interfere with the bacterial communication process referred to as quorum sensing. Many proteobacteria use AHL to coordinate virulence and biofilm formation in a cell density-dependent manner; thus, AHL-interfering enzymes constitute new promising antimicrobial candidates. Among these, lactonases and acylases have been particularly studied. These enzymes have been isolated from various bacterial, archaeal, or eukaryotic organisms and have been evaluated for their ability to control several pathogens. Engineering studies on these enzymes were carried out and successfully modulated their capacity to interact with specific AHL, increase their catalytic activity and stability, or enhance their biotechnological potential. In this review, special attention is paid to the screening, engineering, and applications of AHL-modifying enzymes. Prospects and future opportunities are also discussed with a view to developing potent candidates for bacterial control.
Collapse
Affiliation(s)
- Raphaël Billot
- Gene&GreenTK, Marseille, France; IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | | | | | - Mikael Elias
- Molecular Biology and Biophysics and Biotechnology Institute, Department of Biochemistry, University of Minnesota, St. Paul, Minnesota, USA
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix-Marseille Université, Marseille, France.
| | | |
Collapse
|
9
|
Maddela NR, Meng F. Discrepant roles of a quorum quenching bacterium (Rhodococcus sp. BH4) in growing dual-species biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136402. [PMID: 31955076 DOI: 10.1016/j.scitotenv.2019.136402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Quorum quenching (QQ) is a promising alternative method for biofilm control. However, a largely unexplored issue is the mechanism through which QQ bacteria interact with biofilm-forming bacteria. Here, we explore inter-species interactions during biofilm development (using 96-well polystyrene plates in a static incubator) between the QQ bacterium Rhodococcus sp. BH4 and sludge bacteria. Experimental results revealed that strain BH4 provoked both competitive (76%) and cooperative (24%) interactions (P < 0.05) in dual-species biofilms after 24 h of incubation (mature biofilm), implying that signal destruction by strain BH4 was strain-dependent. Besides hike in the biofilm biomass (~21%), amount of extracellular polymeric substances (EPS) (25-30 times) and particle size (3.5 times) in the Serratia sp. JSB1 biofilm were increased by str. BH4. This suggests that strain BH4 may only have quenching effects against certain bacteria, and that such effects are overlooked at the community level. Taken together, present results imply that in a given biofilm community, not all QS-bacteria interact similarly with Rhodococcus sp. BH4, either because QS-bacteria are tolerant of strain BH4 or QS-bacteria have more than one mechanism for biofilm development. Overall, the QQ-strategy alone seems ineffective at controlling biofilm development, although it may be used in combination with other strategies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China; Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador; Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Regulation and controlling the motility properties of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2019; 104:33-49. [DOI: 10.1007/s00253-019-10201-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
|
11
|
Zhang B, Zhuang X, Guo L, McLean RJC, Chu W. Recombinant N-acyl homoserine lactone-Lactonase AiiA QSI-1 Attenuates Aeromonas hydrophila Virulence Factors, Biofilm Formation and Reduces Mortality in Crucian Carp. Mar Drugs 2019; 17:E499. [PMID: 31461929 PMCID: PMC6780897 DOI: 10.3390/md17090499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/15/2019] [Accepted: 08/24/2019] [Indexed: 01/19/2023] Open
Abstract
Quorum quenching (QQ) is a promising alternative infection-control strategy to antibiotics that controls quorum-regulated virulence without killing the pathogens. Aeromonas hydrophila is an opportunistic gram-negative pathogen living in freshwater and marine environments. A. hydrophila possesses an N-acyl homoserine lactone (AHL)-based quorum-sensing (QS) system that regulates virulence, so quorum signal-inactivation (i.e., QQ) may represent a new way to combat A. hydrophila infection. In this study, an AHL lactonase gene, aiiA was cloned from Bacillus sp. strain QSI-1 and expressed in Escherichia coli strain BL21(DE3). The A. hydrophila hexanoyl homoserine lactone (C6-HSL) QS signal molecule was degraded by AiiAQSI-1, which resulted in a decrease of bacterial swimming motility, reduction of extracellular protease and hemolysin virulence factors, and inhibited the biofilm formation of A. hydrophila YJ-1 in a microtiter assay. In cell culture studies, AiiAQSI-1 decreased the ability of A. hydrophila adherence to and internalization by Epithelioma papulosum cyprini (EPC) cells. During in vivo studies, oral administration of AiiAQSI-1 via feed supplementation attenuated A. hydrophila infection in Crucian Carp. Results from this work indicate that feed supplementation with AiiAQSI-1 protein has potential to control A. hydrophila aquaculture disease via QQ.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiyi Zhuang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Liyun Guo
- Department of Microbiology, Nanjing Institute of Fisheries Science, Nanjing 210036, China
| | - Robert J C McLean
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|