1
|
Kumar S, Najar IN, Sharma P, Tamang S, Mondal K, Das S, Sherpa MT, Thakur N. Temperature - A critical abiotic paradigm that governs bacterial heterogeneity in natural ecological system. ENVIRONMENTAL RESEARCH 2023; 234:116547. [PMID: 37422118 DOI: 10.1016/j.envres.2023.116547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
A baseline data has been presented here to prove that among the abiotic factors, temperature is the most critical factor that regulates and governs the bacterial diversity in a natural ecosystem. Present study in Yumesamdong hot springs riverine vicinity (Sikkim), parades a gamut of bacterial communities in it and hosts them from semi-frigid region (- 4-10 °C) to fervid region (50-60 °C) via an intermediate region (25-37 °C) within the same ecosystem. This is an extremely rare intriguing natural ecosystem that has no anthropogenic disturbances nor any artificial regulation of temperature. We scanned the bacterial flora through both the culture-dependent and culture-independent techniques in this naturally complex thermally graded habitat. High-throughput sequencing gave bacterial and archaeal phyla representatives of over 2000 species showcasing their biodiversity. Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi were the predominant phyla. A concave down-curve significance was found in temperature-abundance correlation as the number of microbial taxa decreased when the temperature increased from warm (35 °C) to hot (60 °C). Firmicutes showed significant linear increase from cold to hot environment whereas Proteobacteria followed the opposite trend. No significant correlation was observed for physicochemical parameters against the bacterial diversity. However, only temperature has shown significant positive correlation to the predominant phyla at their respective thermal gradients. The antibiotic resistance patterns correlated with temperature gradient where the prevalence of antibiotic resistance was higher in case of mesophiles than that of psychrophiles and there was no resistance in thermophiles. The antibiotic resistant genes obtained were solely from mesophiles as it conferred high resistance at mesophilic conditions enabling them to adapt and metabolically compete for survival. Our study concludes that the temperature is a major factor that plays a significant contribution in shaping the bacterial community structure in any thermal gradient edifice.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Krishnendu Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, 721102, India
| | - Sayak Das
- Department of Life Science & Bioinformatics, HK School of Life Sciences, Assam University, Silchar, 788011, Assam, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
2
|
Li H, Zhou H, Yang S, Dai X. Stochastic and Deterministic Assembly Processes in Seamount Microbial Communities. Appl Environ Microbiol 2023; 89:e0070123. [PMID: 37404136 PMCID: PMC10370332 DOI: 10.1128/aem.00701-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Seamounts are ubiquitous in the ocean. However, little is known about how seamount habitat features influence the local microbial community. In this study, the microbial populations of sediment cores from sampling depths of 0.1 to 35 cm from 10 seamount summit sites with a water depth of 1,850 to 3,827 m across the South China Sea (SCS) Basin were analyzed. Compared with nonseamount ecosystems, isolated seamounts function as oases for microbiomes, with average moderate to high levels of microbial abundance, richness, and diversity, and they harbor distinct microbial communities. The distinct characteristics of different seamounts provide a high level of habitat heterogeneity, resulting in the wide range of microbial community diversity observed across all seamounts. Using dormant thermospores as tracers to study the effect of dispersal by ocean currents, the observed distance-decay biogeography across different seamounts shaped simultaneously by the seamounts' naturally occurring heterogeneous habitat and the limitation of ocean current dispersal was found. We also established a framework that links initial community assembly with successional dynamics in seamounts. Seamounts provide resource-rich and dynamic environments, which leads to a dominance of stochasticity during initial community establishment in surface sediments. However, a progressive increase in deterministic environmental selection, correlated with resource depletion in subsurface sediments, leads to the selective growth of rare species of surface sediment communities in shaping the subsurface community. Overall, the study indicates that seamounts are a previously ignored oasis in the deep sea. This study also provides a case study for understanding the microbial ecology in globally widespread seamounts. IMPORTANCE Although there are approximately 25 million seamounts in the ocean, surprisingly little is known about seamount microbial ecology. We provide evidence that seamounts are island-like habitats harboring microbial communities distinct from those of nonseamount habitats, and they exhibit a distance-decay pattern. Environmental selection and dispersal limitation simultaneously shape the observed biogeography. Coupling empirical data with a null mode revealed a shift in the type and strength, which controls microbial community assembly and succession from the seamount surface to the subsurface sediments as follows: (i) community assembly is initially primarily driven by stochastic processes such as dispersal limitation, and (ii) changes in the subsurface environment progressively increase the importance of environmental selection. This case study contributes to the mechanistic understanding essential for a predictive microbial ecology of seamounts.
Collapse
Affiliation(s)
- Haizhou Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Shanghai, China
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Huaiyang Zhou
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Shanshan Yang
- College of Marine Science and Technology, China University of Geosciences, Wuhan, Hubei, China
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institutes of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Xu M, Selvaraj GK, Lu H. Environmental sporobiota: Occurrence, dissemination, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161809. [PMID: 36702282 DOI: 10.1016/j.scitotenv.2023.161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spore-forming bacteria known as sporobiota are widespread in diverse environments from terrestrial and aquatic habitats to industrial and healthcare systems. Studies on sporobiota have been mainly focused on food processing and clinical fields, while a large amount of sporobiota exist in natural environments. Due to their persistence and capabilities of transmitting virulence factors and antibiotic resistant genes, environmental sporobiota could pose significant health risks to humans. These risks could increase as global warming and environmental pollution has altered the life cycle of sporobiota. This review summarizes the current knowledge of environmental sporobiota, including their occurrence, characteristics, and functions. An interaction network among clinical-, food-related, and environment-related sporobiota is constructed. Recent and effective methods for detecting and disinfecting environmental sporobiota are also discussed. Key problems and future research needs for better understanding and reducing the risks of environmental sporobiota and sporobiome are proposed.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ganesh-Kumar Selvaraj
- Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India.
| | - Huijie Lu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang, China.
| |
Collapse
|
4
|
Milojevic T, Cramm MA, Hubert CRJ, Westall F. "Freezing" Thermophiles: From One Temperature Extreme to Another. Microorganisms 2022; 10:2417. [PMID: 36557670 PMCID: PMC9782878 DOI: 10.3390/microorganisms10122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
New detections of thermophiles in psychrobiotic (i.e., bearing cold-tolerant life forms) marine and terrestrial habitats including Arctic marine sediments, Antarctic accretion ice, permafrost, and elsewhere are continually being reported. These microorganisms present great opportunities for microbial ecologists to examine biogeographical processes for spore-formers and non-spore-formers alike, including dispersal histories connecting warm and cold biospheres. In this review, we examine different examples of thermophiles in cryobiotic locations, and highlight exploration of thermophiles at cold temperatures under laboratory conditions. The survival of thermophiles in psychrobiotic environments provokes novel considerations of physiological and molecular mechanisms underlying natural cryopreservation of microorganisms. Cultures of thermophiles maintained at low temperature may serve as a non-sporulating laboratory model for further exploration of metabolic potential of thermophiles at psychrobiotic temperatures, as well as for elucidating molecular mechanisms behind natural preservation and adaptation to psychrobiotic environments. These investigations are highly relevant for the search for life on other cold and icy planets in the Solar System, such as Mars, Europa and Enceladus.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, University of Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| | - Margaret Anne Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Frances Westall
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| |
Collapse
|
5
|
Chakraborty A, Rattray JE, Drake SS, Matthews S, Li C, Jørgensen BB, Hubert CRJ. Metabolic responses of thermophilic endospores to sudden heat-induced perturbation in marine sediment samples. Front Microbiol 2022; 13:958417. [PMID: 36033870 PMCID: PMC9411986 DOI: 10.3389/fmicb.2022.958417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Microbially mediated processes in a given habitat tend to be catalyzed by abundant populations that are ecologically adapted to exploit specific environmental characteristics. Typically, metabolic activities of rare populations are limited but may be stimulated in response to acute environmental stressors. Community responses to sudden changes in temperature and pressure can include suppression and activation of different populations, but these dynamics remain poorly understood. The permanently cold ocean floor hosts countless low-abundance microbes including endospores of thermophilic bacteria. Incubating sediments at high temperature resuscitates viable spores, causing the proliferation of bacterial populations. This presents a tractable system for investigating changes in a microbiome's community structure in response to dramatic environmental perturbations. Incubating permanently cold Arctic fjord sediments at 50°C for 216 h with and without volatile fatty acid amendment provoked major changes in community structure. Germination of thermophilic spores from the sediment rare biosphere was tracked using mass spectrometry-based metabolomics, radiotracer-based sulfate reduction rate measurements, and high-throughput 16S rRNA gene sequencing. Comparing community similarity at different intervals of the incubations showed distinct temporal shifts in microbial populations, depending on organic substrate amendment. Metabolite patterns indicated that amino acids and other sediment-derived organics were decomposed by fermentative Clostridia within the first 12–48 h. This fueled early and late phases of exponential increases in sulfate reduction, highlighting the cross-feeding of volatile fatty acids as electron donors for different sulfate-reducing Desulfotomaculia populations. The succession of germinated endospores triggered by sudden exposure to high temperature and controlled by nutrient availability offers a model for understanding the ecological response of dormant microbial communities following major environmental perturbations.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anirban Chakraborty
| | - Jayne E. Rattray
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sienna S. Drake
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Stuart Matthews
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Carmen Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Bo Barker Jørgensen
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Haines M, Vadlamani A, Daniel Loty Richardson W, Strous M. Pilot-scale outdoor trial of a cyanobacterial consortium at pH 11 in a photobioreactor at high latitude. BIORESOURCE TECHNOLOGY 2022; 354:127173. [PMID: 35452822 DOI: 10.1016/j.biortech.2022.127173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The biomass of microalgae and cyanobacteria yields a variety of products. Outdoor pilot plant trials typically grow a single species at circumneutral pH and provide CO2 by gas sparging. Here a cyanobacterial consortium was grown at high pH (beyond 11) and high dissolved carbonate concentrations (0.5 M) in an outdoor 1,150 L tubular photobioreactor for 130 days in Calgary, Canada. The aim was to assess the productivity and robustness of the consortium. Importantly, the system was designed to enable future integration of air capture of CO2. Productivity was between 3.1 and 5.8 g ash-free dry weight per square metre per day, depending on biomass density and month. 16S rRNA amplicon sequencing showed that cyanobacterium Candidatus "Phormidium alkaliphilum" made up 80% of the consortium. The consortium displayed robust growth and adapted to environmental conditions. Bicarbonate uptake pushed medium pH past 11, demonstrating the ability to achieve CO2 delivery by air capture.
Collapse
Affiliation(s)
- Marianne Haines
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada.
| | | | | | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Sengupta D, Datta S, Biswas D. Surfactant exopolysaccharide of Ochrobactrum pseudintermedium C1 has antibacterial potential: Its bio-medical applications in vitro. Microbiol Res 2020; 236:126466. [PMID: 32193126 DOI: 10.1016/j.micres.2020.126466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 01/09/2023]
Abstract
Since the advent of biologics in human welfare various bio-molecules have been explored. Different bacterial exopolysaccharides have proved their worth in many industrial and commercial applications. In this perspective, while exploring a surfactant exopolysaccharide of Ochrobactrum pseudintermedium C1, it is strikingly observed that it possesses a potent antibacterial property which encourages its bio-medical applications. Following isolation and purification of the said exopolysaccharide, its structural configuration and functional attributes are studied by several analytical procedures involving FTIR, 13C- NMR, CHN-analysis, estimation of zeta potential, XRD-study and digital tensiometry. When treated with pathological samples in vitro, it distinctly elicits its antibacterial property by exhibiting a characteristic zone of inhibition. Combined with a standard antibiotic (like ciprofloxacin), it enhances the action of antibiotic also. Mechanism of its antibacterial action is evaluated by crystal violet entrapment assay with UV-vis spectrophotometry, bacterial cell viability assay by trypan blue staining and SEM study. Results show that its basic surfactant property, anionic character, crystalline nature and scaffolding architecture are supposed to facilitate its antibacterial property which is manifested by its capability of disrupting bacterial cell envelope causing eventual cell death. In the current global scenario, an increasing threat of antibiotic resistance is prevailing due to their indiscriminate use. If used as an adjuvant with a judicious dose of antibiotic, this bio-molecule might play a significant role in bio-medicine to combat such threat.
Collapse
Affiliation(s)
- Dipanjan Sengupta
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, Kolkata, India
| | - Sriparna Datta
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, Kolkata, India.
| | - Dipa Biswas
- Department of Chemical Technology, Rajabazar Science College, University of Calcutta, Kolkata, India
| |
Collapse
|
8
|
Matsuoka T, Sogame Y, Nakamura R, Hasegawa Y, Arikawa M, Suizu F. Antifreeze Water-Rich Dormant Cysts of the Terrestrial Ciliate Colpoda cucullus Nag-1 at −65 ℃: Possible Involvement of Ultra-Antifreeze Polysaccharides. ACTA PROTOZOOL 2020. [DOI: 10.4467/16890027ap.20.011.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We found that the water-rich (osmolality below 0.052 Osm/l) wet resting cysts of the soil ciliate Colpoda cucullus Nag-1 were tolerant to extremely low temperature (−65℃). When cell fluid obtained from the resting cysts was cooled at −65℃, small particles of ice crystals did not grow into large ice crystals. At −65℃, the cysts shrank due to an outflow of water, because a vapor pressure difference was produced between the cell interior and freezing surrounding medium. The osmolality of these shrunk cells was estimated 0.55 Osm/l, and the freezing point depression of the shrunk cell fluid was estimated to be 1.02℃. Hence, the antifreeze ability of wet cysts at −65℃can not be explained by freezing point depression due to elevation of cytoplasmic osmolality.
The cytoplasm of resting cysts was vividly stained red with periodic acid-Schiff (PAS) and stained purple with toluidine blue. On the other hand, the excystment-induced cysts were not stained with PAS, and exhibited a loss of the antifreeze activity. PAS staining of SDSPAGE gel obtained from encysting Colpoda cells showed that a large amount of PAS-positive macromolecules accumulated as the encystment stage progressed. These results suggest that antifreeze polysaccharides may be involved in the antifreeze activity of C. cucullus Nag-1 dormant forms.
Collapse
Affiliation(s)
- Tatsuomi Matsuoka
- Department of Biological Science, Faculty of Science and Technology, Kochi University
| | - Yoichiro Sogame
- Department of Applied Chemistry & Biochemistry, National Institute of Technology, Fukushima College; Department of Biological Science, Faculty of Science, Kochi University
| | - Rikiya Nakamura
- Department of Biological Science, Faculty of Science, Kochi University; Chikazawa Paper Co., Ltd
| | - Yuya Hasegawa
- Department of Biological Science, Faculty of Science, Kochi University
| | - Mikihiko Arikawa
- Department of Biological Science, Faculty of Science and Technology, Kochi University
| | - Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University
| |
Collapse
|