1
|
Kuratli J, Leonard CA, Frohns A, Schoborg R, Piazena H, Borel N. Refinement of water-filtered infrared A (wIRA) irradiations of in vitro acute and persistent chlamydial infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112533. [PMID: 35914465 DOI: 10.1016/j.jphotobiol.2022.112533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Water-filtered infrared A (wIRA) alone or in combination with visible light (VIS) exerts anti-chlamydial effects in vitro and in vivo in acute infection models. However, it has remained unclear whether reduced irradiation duration and irradiance would still maintain anti-chlamydial efficacy. Furthermore, efficacy of this non-chemical treatment option against persistent (chronic) chlamydial infections has not been investigated to date. To address this knowledge gap, we evaluated 1) irradiation durations of 5, 15 or 30 min in genital and ocular Chlamydia trachomatis acute infection models, 2) irradiances of 100, 150 or 200 mW/cm2 in the acute genital infection model and 3) anti-chlamydial activity of wIRA and VIS against C. trachomatis serovar B and E with amoxicillin (AMX)- or interferon γ (IFN-γ)-induced persistence. Reduction of irradiation duration reduced anti-chlamydial efficacy. Irradiances of 150 to 200 mW/cm2, but not 100 mW/cm2, induced anti-chlamydial effects. For persistent infections, wIRA and VIS irradiation showed robust anti-chlamydial activity independent of the infection status (persistent or recovering), persistence inducer (AMX or IFN-γ) or chlamydial strain (serovar B or E). This study clarifies the requirement of 30 min irradiation duration and 150 mW/cm2 irradiance to induce significant anti-chlamydial effects in vitro, supports the use of irradiation in the wIRA and VIS spectrum as a promising non-chemical treatment for chlamydial infections and provides important information for follow-up in vivo studies. Notably, wIRA and VIS exert anti-chlamydial effects on persistent chlamydiae which are known to be refractory to antibiotic treatment.
Collapse
Affiliation(s)
- Jasmin Kuratli
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 268, 8057 Zürich, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland.
| | - Cory Ann Leonard
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 268, 8057 Zürich, Switzerland.
| | - Antonia Frohns
- Plant membrane biophysics, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Robert Schoborg
- Department of Medical Education and Center for Infectious Disease, Inflammation and Immunity, Quillen College in Medicine, East Tennessee State University, PO Box 70582, Johnson City, TN 37614, USA.
| | - Helmut Piazena
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporative Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Nicole Borel
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 268, 8057 Zürich, Switzerland.
| |
Collapse
|
2
|
Frohns A, Stojanovic M, Barisani-Asenbauer T, Kuratli J, Borel N, Inic-Kanada A. Effects of water-filtered infrared A and visible light (wIRA/VIS) radiation on heat- and stress-responsive proteins in the retina and cornea of guinea pigs. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112306. [PMID: 34562830 DOI: 10.1016/j.jphotobiol.2021.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Water-filtered infrared A and visible light (wIRA/VIS), shown to reduce chlamydial infections in vitro and in vivo, might represent an innovative therapeutic approach against trachoma, a neglected tropical disease caused by ocular infection with the bacterium C. trachomatis. In this in vivo study, we assessed the impact of wIRA radiation in combination with VIS (wavelength range 595-1400 nm, intensity 2100 W/m2) on the retina and cornea in a guinea pig animal model of inclusion conjunctivitis. We investigated the effects 19 days after wIRA/VIS irradiation by comparing a single and double wIRA/VIS treatment with a sham control. By immunolabeling and western blot analyses of critical heat- and stress-responsive proteins, we could not detect wIRA/VIS-induced changes in their expression pattern. Also, immunolabeling of specific retinal marker proteins revealed no changes in their expression pattern caused by the treatment. Our preclinical study suggests wIRA/VIS as a promising and safe therapeutic tool to treat ocular chlamydial infections.
Collapse
Affiliation(s)
| | | | - Talin Barisani-Asenbauer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Kuratli
- Institute of Veterinary Pathology, (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Aleksandra Inic-Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Borel N, Sauer-Durand AM, Hartel M, Kuratli J, Vaupel P, Scherr N, Pluschke G. wIRA: hyperthermia as a treatment option for intracellular bacteria, with special focus on Chlamydiae and Mycobacteria. Int J Hyperthermia 2020; 37:373-383. [PMID: 32319834 DOI: 10.1080/02656736.2020.1751312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria in the last century is alarming and calls for alternative, nonchemical treatment strategies. Thermal medicine uses heat for the treatment of infectious diseases but its use in facultative and obligate intracellular bacteria remains poorly studied. In this review, we summarize previous research on reducing the infectious burden of Mycobacterium ulcerans and Chlamydia trachomatis by using water-filtered infrared A-radiation (wIRA), a special form of heat radiation with high tissue penetration and low thermal load on the skin surface. Mycobacterium ulcerans is a thermosensitive bacterium causing chronic necrotizing skin disease. Therefore, previous data on wIRA-induced improvement of wound healing and reduction of wound infections is summarized first. Then, pathogenesis and treatment of infections with M. ulcerans causing Buruli ulcer and of those with C. trachomatis infecting the ocular conjunctiva and resulting in blinding trachoma are discussed. Both bacteria cause neglected tropical diseases and have similar geographical distributions. Results of previous in vitro and in vivo studies using wIRA on M. ulcerans and C. trachomatis infections are presented. Finally, technical aspects of using wIRA in patients are critically reviewed and open questions driving future research are highlighted. In conclusion, wIRA is a promising tool for reducing infectious burden due to intracellular bacteria such as M. ulcerans and C. trachomatis.
Collapse
Affiliation(s)
- Nicole Borel
- Infection Pathology Unit, Department of Pathobiology, Vetsuisse Faculty and Center for Applied Biotechnology and Molecular Medicine (CABMM), Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | | | - Mark Hartel
- Clinic for Visceral Surgery, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Jasmin Kuratli
- Infection Pathology Unit, Department of Pathobiology, Vetsuisse Faculty and Center for Applied Biotechnology and Molecular Medicine (CABMM), Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Peter Vaupel
- Department of Radiation Oncology, Medical Center, University of Freiburg, Freiburg i.B, Germany
| | - Nicole Scherr
- Molecular Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| |
Collapse
|
4
|
Inic-Kanada A, Stojanovic M, Miljkovic R, Stein E, Filipovic A, Frohns A, Zöller N, Kuratli J, Barisani-Asenbauer T, Borel N. Water-filtered Infrared A and visible light (wIRA/VIS) treatment reduces Chlamydia caviae-induced ocular inflammation and infectious load in a Guinea pig model of inclusion conjunctivitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111953. [PMID: 32653859 DOI: 10.1016/j.jphotobiol.2020.111953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 11/29/2022]
Abstract
Trachoma is a devastating neglected tropical disease caused by Chlamydia trachomatis and the leading global cause of infectious blindness. Although antibiotic treatment against trachoma is efficient (SAFE strategy), additional affordable therapeutic strategies are of high interest. Water-filtered infrared A and visible light (wIRA/VIS) irradiation has proven to reduce chlamydial infectivity in vitro and ex vivo. The aim of this study was to evaluate whether wIRA/VIS can reduce chlamydial infection load and/or ocular pathology in vivo, in a guinea pig model of inclusion conjunctivitis. Guinea pigs were infected with 1 × 106 inclusion-forming units/eye of Chlamydia caviae via the ocular conjunctiva on day 0. In infected animals, wIRA/VIS irradiation (2100 W/m2) was applied on day 2 (single treatment) and on days 2 and 4 (double treatment) post-infection (pi). wIRA/VIS reduced the clinical pathology score on days 7 and 14 pi and the conjunctival chlamydial load on days 2, 4, 7, and 14 pi in comparison with C. caviae-infected, not irradiated, controls. Furthermore, numbers of chlamydial inclusions were decreased in wIRA/VIS treated C. caviae-infected guinea pigs on day 21 pi compared to C. caviae-infected, non-irradiated, controls. Double treatment with wIRA/VIS (days 2 and 4 pi) was more efficient than a single treatment on day 2 pi. wIRA/VIS treatment did neither induce macroscopic nor histologic changes in ocular tissues. Our results indicate that wIRA/VIS shows promising efficacy to reduce chlamydial infectivity in vivo without causing irradiation related pathologies in the follow-up period. wIRA/VIS irradiation is a promising approach to reduce trachoma transmission and pathology of ocular chlamydial infection.
Collapse
Affiliation(s)
- Aleksandra Inic-Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria.
| | | | | | | | - Ana Filipovic
- Institute of Virology, Vaccines and Sera - TORLAK, Belgrade, Serbia
| | | | - Nadja Zöller
- Universitätsklinikum Frankfurt, Klinik für Dermatologie, Venerologie und Allergologie, Frankfurt, Germany
| | - Jasmin Kuratli
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Talin Barisani-Asenbauer
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|