1
|
Hackley RK, Vreugdenhil-Hayslette A, Darnell CL, Schmid AK. A conserved transcription factor controls gluconeogenesis via distinct targets in hypersaline-adapted archaea with diverse metabolic capabilities. PLoS Genet 2024; 20:e1011115. [PMID: 38227606 PMCID: PMC10817205 DOI: 10.1371/journal.pgen.1011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
Timely regulation of carbon metabolic pathways is essential for cellular processes and to prevent futile cycling of intracellular metabolites. In Halobacterium salinarum, a hypersaline adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and other biosynthetic pathways. Notably, Hbt. salinarum does not utilize carbohydrates for energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional regulator in a saccharolytic generalist, Haloarcula hispanica, to investigate whether the targets and function of TrmB, or its regulon, is conserved in related species with distinct metabolic capabilities. In Har. hispanica, TrmB binds to 15 sites in the genome and induces the expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An important regulatory control point in Hbt. salinarum, activation of ppsA and repression of pykA, is absent in Har. hispanica. Contrary to its role in Hbt. salinarum and saccharolytic hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or catabolism of other carbon sources in Har. hispanica. Cumulatively, these findings suggest rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea.
Collapse
Affiliation(s)
- Rylee K. Hackley
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | | | - Cynthia L. Darnell
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Amy K. Schmid
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Gelsinger DR, DiRuggiero J. Small RNA-Sequencing Library Preparation for the Halophilic Archaeon Haloferax volcanii. Methods Mol Biol 2022; 2522:243-254. [PMID: 36125754 DOI: 10.1007/978-1-0716-2445-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranscriptional regulation actuated by small RNAs (sRNAs) plays essential roles in a wide variety of cellular processes, especially in stress responses and environmental signaling. Hundreds of sRNAs have recently been discovered in archaea using genome-wide approaches but the molecular mechanisms of only a few have been characterized experimentally. Here, we describe how to build sRNA sequencing libraries using size-selected total RNA in the model archaeon, Haloferax volcanii , to provide a tool to further characterize sRNAs in archaea.
Collapse
Affiliation(s)
- Diego Rivera Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jocelyne DiRuggiero
- Department of Biology and Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Gelsinger DR, Reddy R, Whittington K, Debic S, DiRuggiero J. Post-transcriptional regulation of redox homeostasis by the small RNA SHOxi in haloarchaea. RNA Biol 2021; 18:1867-1881. [PMID: 33522404 PMCID: PMC8583180 DOI: 10.1080/15476286.2021.1874717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
While haloarchaea are highly resistant to oxidative stress, a comprehensive understanding of the processes regulating this remarkable response is lacking. Oxidative stress-responsive small non-coding RNAs (sRNAs) have been reported in the model archaeon, Haloferax volc anii, but targets and mechanisms have not been elucidated. Using a combination of high throughput and reverse molecular genetic approaches, we elucidated the functional role of the most up-regulated intergenic sRNA during oxidative stress in H. volcanii, named Small RNA in Haloferax Oxidative Stress (SHOxi). SHOxi was predicted to form a stable secondary structure with a conserved stem-loop region as the potential binding site for trans-targets. NAD-dependent malic enzyme mRNA, identified as a putative target of SHOxi, interacted directly with a putative 'seed' region within the predicted stem loop of SHOxi. Malic enzyme catalyzes the oxidative decarboxylation of malate into pyruvate using NAD+ as a cofactor. The destabilization of malic enzyme mRNA, and the decrease in the NAD+/NADH ratio, resulting from the direct RNA-RNA interaction between SHOxi and its trans-target was essential for the survival of H. volcanii to oxidative stress. These findings indicate that SHOxi likely regulates redox homoeostasis during oxidative stress by the post-transcriptional destabilization of malic enzyme mRNA. SHOxi-mediated regulation provides evidence that the fine-tuning of metabolic cofactors could be a core strategy to mitigate damage from oxidative stress and confer resistance. This study is the first to establish the regulatory effects of sRNAs on mRNAs during the oxidative stress response in Archaea.
Collapse
Affiliation(s)
| | - Rahul Reddy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Sara Debic
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jocelyne DiRuggiero
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Märkle P, Maier LK, Maaß S, Hirschfeld C, Bartel J, Becher D, Voß B, Marchfelder A. A Small RNA Is Linking CRISPR-Cas and Zinc Transport. Front Mol Biosci 2021; 8:640440. [PMID: 34055875 PMCID: PMC8155600 DOI: 10.3389/fmolb.2021.640440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The function and mode of action of small regulatory RNAs is currently still understudied in archaea. In the halophilic archaeon Haloferax volcanii, a plethora of sRNAs have been identified; however, in-depth functional analysis is missing for most of them. We selected a small RNA (s479) from Haloferax volcanii for detailed characterization. The sRNA gene is encoded between a CRISPR RNA locus and the Cas protein gene cluster, and the s479 deletion strain is viable and was characterized in detail. Transcriptome studies of wild-type Haloferax cells and the deletion mutant revealed upregulation of six genes in the deletion strain, showing that this sRNA has a clearly defined function. Three of the six upregulated genes encode potential zinc transporter proteins (ZnuA1, ZnuB1, and ZnuC1) suggesting the involvement of s479 in the regulation of zinc transport. Upregulation of these genes in the deletion strain was confirmed by northern blot and proteome analyses. Furthermore, electrophoretic mobility shift assays demonstrate a direct interaction of s479 with the target znuC1 mRNA. Proteome comparison of wild-type and deletion strains further expanded the regulon of s479 deeply rooting this sRNA within the metabolism of H. volcanii especially the regulation of transporter abundance. Interestingly, s479 is not only encoded next to CRISPR-cas genes, but the mature s479 contains a crRNA-like 5' handle, and experiments with Cas protein deletion strains indicate maturation by Cas6 and interaction with Cas proteins. Together, this might suggest that the CRISPR-Cas system is involved in s479 function.
Collapse
Affiliation(s)
- Pascal Märkle
- Department of Biology II, Ulm University, Ulm, Germany
| | | | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Björn Voß
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
5
|
Zahn S, Kubatova N, Pyper DJ, Cassidy L, Saxena K, Tholey A, Schwalbe H, Soppa J. Biological functions, genetic and biochemical characterization, and NMR structure determination of the small zinc finger protein HVO_2753 from
Haloferax volcanii. FEBS J 2020; 288:2042-2062. [DOI: 10.1111/febs.15559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Sebastian Zahn
- Institute for Molecular Biosciences Goethe‐University Frankfurt Germany
| | - Nina Kubatova
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance Goethe‐University Frankfurt/Main Germany
| | - Dennis J. Pyper
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance Goethe‐University Frankfurt/Main Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance Goethe‐University Frankfurt/Main Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance Goethe‐University Frankfurt/Main Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences Goethe‐University Frankfurt Germany
- Johann Wolfgang Goethe‐Universität Frankfurt am Main Germany
| |
Collapse
|
6
|
Gelsinger DR, Uritskiy G, Reddy R, Munn A, Farney K, DiRuggiero J. Regulatory Noncoding Small RNAs Are Diverse and Abundant in an Extremophilic Microbial Community. mSystems 2020; 5:e00584-19. [PMID: 32019831 PMCID: PMC7002113 DOI: 10.1128/msystems.00584-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Regulatory small RNAs (sRNAs) play large-scale and essential roles in many cellular processes across all domains of life. Microbial sRNAs have been extensively studied in model organisms, but very little is known about the dynamics of sRNA synthesis and their roles in the natural environment. In this study, we discovered hundreds of intergenic (itsRNAs) and antisense (asRNAs) sRNAs expressed in an extremophilic microbial community inhabiting halite nodules (salt rocks) in the Atacama Desert. For this, we built SnapT, a new sRNA annotation pipeline that can be applied to any microbial community. We found asRNAs with expression levels negatively correlated with that of their overlapping putative target and itsRNAs that were conserved and significantly differentially expressed between 2 sampling time points. We demonstrated that we could perform target prediction and correlate expression levels between sRNAs and predicted target mRNAs at the community level. Functions of putative mRNA targets reflected the environmental challenges members of the halite communities were subjected to, including osmotic adjustments to a major rain event and competition for nutrients.IMPORTANCE Microorganisms in the natural world are found in communities, communicating and interacting with each other; therefore, it is essential that microbial regulatory mechanisms, such as gene regulation affected by small RNAs (sRNAs), be investigated at the community level. This work demonstrates that metatranscriptomic field experiments can link environmental variation with changes in RNA pools and have the potential to provide new insights into environmental sensing and responses in natural microbial communities through noncoding RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Diego R Gelsinger
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Gherman Uritskiy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Rahul Reddy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam Munn
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Katie Farney
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jocelyne DiRuggiero
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
A Novel Noncoding RNA dsr11 Involved in Heat Stress Tolerance in Deinococcus radiodurans. Biomolecules 2019; 10:biom10010022. [PMID: 31877996 PMCID: PMC7022480 DOI: 10.3390/biom10010022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Deinococcus radiodurans is an extremely resistant bacteria that has evolved masterful strategies to enable survival under various environmental stress conditions. Heat stress is a major environmental stress factor that can cause denaturation of proteins, membrane disruption, and oxidative stress. Previous studies have examined the mechanisms of the heat stress response by analyzing changes in protein levels; however, little is known about the role of small noncoding RNAs (ncRNAs), which are known to play important regulatory functions in bacteria during various environmental stress response. The ncRNA dsr11 of D. radiodurans was previously identified by RNA-seq and Northern blot. In this study, we showed that the transcription level of dsr11 was up-regulated 4.2-fold under heat stress by qRT-PCR analysis. Heat tolerance assay showed that deleting dsr11 significantly inhibited the viability under high temperature conditions. To assess the influence of dsr11 on the D. radiodurans transcriptome, 157 genes were found differentially expressed in the knock-out mutant by RNA-seq experiment. Combining RNA-seq and in silico analysis, we found that trmE (tRNA modification GTPase) and dr_0651 (arginase) were likely to be the direct targets of dsr11. Further microscale thermophoresis results demonstrated that dsr11 can directly bind to the mRNA of trmE and dr_0651. Our results indicated that dsr11 can enhance the tolerance to heat stress of D. radiodurans by binding to trmE and dr_0651 mRNA. Overall, these results extend our understanding of ncRNA regulation and provide new insights into the heat stress response in D. radiodurans.
Collapse
|