1
|
Martins D, Nerber HN, Roughton CG, Fasquelle A, Barwinska-Sendra A, Vollmer D, Gray J, Vollmer W, Sorg JA, Salgado PS, Henriques AO, Serrano M. Cleavage of an engulfment peptidoglycan hydrolase by a sporulation signature protease in Clostridioides difficile. Mol Microbiol 2024; 122:213-229. [PMID: 38922761 PMCID: PMC11309906 DOI: 10.1111/mmi.15291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In the model organism Bacillus subtilis, a signaling protease produced in the forespore, SpoIVB, is essential for the activation of the sigma factor σK, which is produced in the mother cell as an inactive pro-protein, pro-σK. SpoIVB has a second function essential to sporulation, most likely during cortex synthesis. The cortex is composed of peptidoglycan (PG) and is essential for the spore's heat resistance and dormancy. Surprisingly, the genome of the intestinal pathogen Clostridioides difficile, in which σK is produced without a pro-sequence, encodes two SpoIVB paralogs, SpoIVB1 and SpoIVB2. Here, we show that spoIVB1 is dispensable for sporulation, while a spoIVB2 in-frame deletion mutant fails to produce heat-resistant spores. The spoIVB2 mutant enters sporulation, undergoes asymmetric division, and completes engulfment of the forespore by the mother cell but fails to synthesize the spore cortex. We show that SpoIIP, a PG hydrolase and part of the engulfasome, the machinery essential for engulfment, is cleaved by SpoIVB2 into an inactive form. Within the engulfasome, the SpoIIP amidase activity generates the substrates for the SpoIID lytic transglycosylase. Thus, following engulfment completion, the cleavage and inactivation of SpoIIP by SpoIVB2 curtails the engulfasome hydrolytic activity, at a time when synthesis of the spore cortex peptidoglycan begins. SpoIVB2 is also required for normal late gene expression in the forespore by a currently unknown mechanism. Together, these observations suggest a role for SpoIVB2 in coordinating late morphological and gene expression events between the forespore and the mother cell.
Collapse
Affiliation(s)
- Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Hailee N. Nerber
- Texas A&M University, College Station, TX, Biology Department, Texas, USA
| | - Charlotte G. Roughton
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Amaury Fasquelle
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Anna Barwinska-Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniela Vollmer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joe Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Waldemar Vollmer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Australia
| | - Joseph A. Sorg
- Texas A&M University, College Station, TX, Biology Department, Texas, USA
| | - Paula S. Salgado
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
2
|
Breaker RR, Harris KA, Lyon SE, Wencker FDR, Fernando CM. Evidence that OLE RNA is a component of a major stress-responsive ribonucleoprotein particle in extremophilic bacteria. Mol Microbiol 2023; 120:324-340. [PMID: 37469248 DOI: 10.1111/mmi.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
OLE RNA is a ~600-nucleotide noncoding RNA present in many Gram-positive bacteria that thrive mostly in extreme environments, including elevated temperature, salt, and pH conditions. The precise biochemical functions of this highly conserved RNA remain unknown, but it forms a ribonucleoprotein (RNP) complex that localizes to cell membranes. Genetic disruption of the RNA or its essential protein partners causes reduced cell growth under various stress conditions. These phenotypes include sensitivity to short-chain alcohols, cold intolerance, reduced growth on sub-optimal carbon sources, and intolerance of even modest concentrations of Mg2+ . Thus, many bacterial species appear to employ OLE RNA as a component of an intricate RNP apparatus to monitor fundamental cellular processes and make physiological and metabolic adaptations. Herein we hypothesize that the OLE RNP complex is functionally equivalent to the eukaryotic TOR complexes, which integrate signals from various diverse pathways to coordinate processes central to cell growth, replication, and survival.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Freya D R Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Chrishan M Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Sun G, Yang M, Jiang L, Huang M. Regulation of pro-σ K activation: a key checkpoint in Bacillus subtilis sporulation. Environ Microbiol 2021; 23:2366-2373. [PMID: 33538382 DOI: 10.1111/1462-2920.15415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis initiates the sporulation process under conditions of nutrient limitation. Here, we review related work in this field, focusing on the protein processing of the pro-σK activation. The purpose of this review is to illustrate the mechanism of pro-σK activation and provide structural insights into the regulation of spore production. Sporulation is not only important in basic science but also provides mechanistic insight for bacterial control in applications in, e.g., food industry.
Collapse
Affiliation(s)
- Gaohui Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China
| |
Collapse
|
4
|
Jiang L, Yuan C, Huang M. A general strategy to inhibit serine protease by targeting its autolysis loop. FASEB J 2021; 35:e21259. [DOI: 10.1096/fj.202002139rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Longguang Jiang
- College of Chemistry Fuzhou University Fuzhou P.R. China
- Fujian Key Laboratory of Marine Enzyme Engineering Fuzhou University Fuzhou P.R. China
| | - Cai Yuan
- College of Biological Science and Engineering Fuzhou University Fuzhou P.R. China
| | - Mingdong Huang
- College of Chemistry Fuzhou University Fuzhou P.R. China
| |
Collapse
|