1
|
Qiu Y, Meng Y, Lian W, Jian S, Du Y, Wang M, Yang Y, Liang X, Zhang Y. Polymorphisms at amino acid positions 85 and 86 in succinate dehydrogenase subunit C of Colletotrichum siamense: Implications for fitness and intrinsic sensitivity to SDHI fungicides. Fungal Genet Biol 2023; 169:103844. [PMID: 37989450 DOI: 10.1016/j.fgb.2023.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Among succinate dehydrogenase inhibiter (SDHI) fungicides, penthiopyrad and benzovindiflupyr particularly inhibit Colletotrichum. Studying SDH amino acid polymorphism in Colletotrichum, along with its fungicide binding sites, is key to understanding their mechanisms of action. This study explores the SDH amino acid polymorphisms in Colletotrichum siamense strains from rubber trees in China and their interaction with SDHI fungicides, specifically penthiopyrad and benzovindiflupyr. Sequencing revealed most polymorphisms were in the SDHC subunit, particularly at positions 85 and 86, which are key to penthiopyrad resistance. Among 33 isolates, 33.3 % exhibited a substitution at position 85, and 9 % at position 86. A strain with W85L and T86N substitutions in SDHC showed reduced SDH activity, ATP content, mycelial growth, and virulence, and decreased sensitivity to penthiopyrad but not benzovindiflupyr. Molecular docking with Alphafold2 modeling suggested distinct binding modes of the two fungicides to C. siamense SDH. These findings underscore the importance of SDHC polymorphisms in C. siamense's fitness and sensitivity to SDHIs, enhancing our understanding of pathogen-SDHI interactions and aiding the development of novel SDHI fungicides.
Collapse
Affiliation(s)
- Yurong Qiu
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Yaling Meng
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Wenxu Lian
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Shasha Jian
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Yannan Du
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Meng Wang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Ye Yang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xiaoyu Liang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
| | - Yu Zhang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
| |
Collapse
|
2
|
Gemler BT, Mukherjee C, Howland CA, Huk D, Shank Z, Harbo LJ, Tabbaa OP, Bartling CM. Function-based classification of hazardous biological sequences: Demonstration of a new paradigm for biohazard assessments. Front Bioeng Biotechnol 2022; 10:979497. [PMID: 36277394 PMCID: PMC9585941 DOI: 10.3389/fbioe.2022.979497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Bioengineering applies analytical and engineering principles to identify functional biological building blocks for biotechnology applications. While these building blocks are leveraged to improve the human condition, the lack of simplistic, machine-readable definition of biohazards at the function level is creating a gap for biosafety practices. More specifically, traditional safety practices focus on the biohazards of known pathogens at the organism-level and may not accurately consider novel biodesigns with engineered functionalities at the genetic component-level. This gap is motivating the need for a paradigm shift from organism-centric procedures to function-centric biohazard identification and classification practices. To address this challenge, we present a novel methodology for classifying biohazards at the individual sequence level, which we then compiled to distinguish the biohazardous property of pathogenicity at the whole genome level. Our methodology is rooted in compilation of hazardous functions, defined as a set of sequences and associated metadata that describe coarse-level functions associated with pathogens (e.g., adherence, immune subversion). We demonstrate that the resulting database can be used to develop hazardous “fingerprints” based on the functional metadata categories. We verified that these hazardous functions are found at higher levels in pathogens compared to non-pathogens, and hierarchical clustering of the fingerprints can distinguish between these two groups. The methodology presented here defines the hazardous functions associated with bioengineering functional building blocks at the sequence level, which provide a foundational framework for classifying biological hazards at the organism level, thus leading to the improvement and standardization of current biosecurity and biosafety practices.
Collapse
|
3
|
New-Generation Sequencing Technology in Diagnosis of Fungal Plant Pathogens: A Dream Comes True? J Fungi (Basel) 2022; 8:jof8070737. [PMID: 35887492 PMCID: PMC9320658 DOI: 10.3390/jof8070737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
The fast and continued progress of high-throughput sequencing (HTS) and the drastic reduction of its costs have boosted new and unpredictable developments in the field of plant pathology. The cost of whole-genome sequencing, which, until few years ago, was prohibitive for many projects, is now so affordable that a new branch, phylogenomics, is being developed. Fungal taxonomy is being deeply influenced by genome comparison, too. It is now easier to discover new genes as potential targets for an accurate diagnosis of new or emerging pathogens, notably those of quarantine concern. Similarly, with the development of metabarcoding and metagenomics techniques, it is now possible to unravel complex diseases or answer crucial questions, such as "What's in my soil?", to a good approximation, including fungi, bacteria, nematodes, etc. The new technologies allow to redraw the approach for disease control strategies considering the pathogens within their environment and deciphering the complex interactions between microorganisms and the cultivated crops. This kind of analysis usually generates big data that need sophisticated bioinformatic tools (machine learning, artificial intelligence) for their management. Herein, examples of the use of new technologies for research in fungal diversity and diagnosis of some fungal pathogens are reported.
Collapse
|
4
|
Jin J, McCorkle KL, Cornish V, Carbone I, Lewis RS, Shew HD. Adaptation of Phytophthora nicotianae to Multiple Sources of Partial Resistance in Tobacco. PLANT DISEASE 2022; 106:906-917. [PMID: 34735283 DOI: 10.1094/pdis-06-21-1241-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Host resistance is an important tool in the management of black shank disease of tobacco. Race development leads to rapid loss of single-gene resistance, but the adaptation by Phytophthora nicotianae to sources of partial resistance from Beinhart 1000, Florida 301, and the Wz gene region introgressed from Nicotiana rustica is poorly characterized. In greenhouse environments, host genotypes with quantitative trait loci (QTLs) conferring resistance from multiple sources were initially inoculated with an aggressive isolate of race 0 or race 1 of P. nicotianae. The most aggressive isolate was selected after each of six host generations to inoculate the next generation of plants. The race 0 isolate demonstrated a continuous gradual increase in disease severity and percentage root rot on all sources of resistance except the genotype K 326 Wz/-, where a large increase in both was observed between generations 2 and 3. Adaptation by the race 0 isolate on Beinhart 1000 represents the first report of adaptation to this genotype by P. nicotianae. The race 1 isolate did not exhibit significant increases in aggressiveness over generations but exhibited a large increase in aggressiveness on K 326 Wz/- between generations 3 and 4. Molecular characterization of isolates recovered during selection was completed via double digest restriction-site associated DNA sequencing, but no polymorphisms were associated with the observed changes in aggressiveness. The rapid adaptation to Wz resistance and the gradual adaptation to other QTLs highlights the need to study the nature of Wz resistance and to conduct field studies on the efficacy of resistance gene rotation for disease management.
Collapse
Affiliation(s)
- Jing Jin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Kestrel L McCorkle
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Vicki Cornish
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Ramsey S Lewis
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC 27695
| | - H David Shew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
5
|
Jin J, Shew HD. Impacts of Continued Exposure to a Susceptible Host Genotype on Aggressiveness of Phytophthora nicotianae Isolates Adapted to Multiple Sources of Partial Resistance. PLANT DISEASE 2022; 106:373-381. [PMID: 34282925 DOI: 10.1094/pdis-09-20-1972-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pathogen adaptation can threaten the durability of partial resistance. Mixed plantings of susceptible and partially resistant varieties may prolong the effectiveness of partial resistance, but little is known about how continued exposure to a susceptible genotype can change the aggressiveness of pathogen isolates adapted to a source of partial resistance. The objective of this study was to examine the effects of continued exposure to a highly susceptible tobacco genotype on isolates of Phytophthora nicotianae that had been adapted to partial resistance. Isolates of P. nicotianae previously adapted to two sources of partial resistance were continually exposed to either the original host of adaptation or a susceptible host. After six generations of host exposure, isolates obtained from the partially resistant and the susceptible hosts were compared for their aggressiveness on the resistant host and for differences in expression of genes associated with pathogenicity and aggressiveness. Results suggested that exposure to the susceptible tobacco genotype reduced aggressiveness of isolates adapted to partial resistance in K 326 Wz/- but not of isolates adapted to partial resistance in Fla 301. Quantification of pathogenicity-associated gene expression using qRT-PCR suggested the rapid change in aggressiveness of isolates adapted to Wz-sourced partial resistance may have resulted from modification in gene expression in multiple genes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - H David Shew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
6
|
Derbyshire MC, Harper LA, Lopez-Ruiz FJ. Positive Selection of Transcription Factors Is a Prominent Feature of the Evolution of a Plant Pathogenic Genus Originating in the Miocene. Genome Biol Evol 2021; 13:6325025. [PMID: 34289036 PMCID: PMC8379374 DOI: 10.1093/gbe/evab167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
Tests based on the dN/dS statistic are used to identify positive selection of nonsynonymous polymorphisms. Using these tests on alignments of all orthologs from related species can provide insights into which gene categories have been most frequently positively selected. However, longer alignments have more power to detect positive selection, creating a detection bias that could create misleading results from functional enrichment tests. Most studies of positive selection in plant pathogens focus on genes with specific virulence functions, with little emphasis on broader molecular processes. Furthermore, no studies in plant pathogens have accounted for detection bias due to alignment length when performing functional enrichment tests. To address these research gaps, we analyze 12 genomes of the phytopathogenic fungal genus Botrytis, including two sequenced in this study. To establish a temporal context, we estimated fossil-calibrated divergence times for the genus. We find that Botrytis likely originated 16–18 Ma in the Miocene and underwent continuous radiation ending in the Pliocene. An untargeted scan of Botrytis single-copy orthologs for positive selection with three different statistical tests uncovered evidence for positive selection among proteases, signaling proteins, CAZymes, and secreted proteins. There was also a strong overrepresentation of transcription factors among positively selected genes. This overrepresentation was still apparent after two complementary controls for detection bias due to sequence length. Positively selected sites were depleted within DNA-binding domains, suggesting changes in transcriptional responses to internal and external cues or protein–protein interactions have undergone positive selection more frequently than changes in promoter fidelity.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, Curtin University, Perth, Western Australia, Australia
| | - Lincoln A Harper
- Centre for Crop and Disease Management, Curtin University, Perth, Western Australia, Australia
| | - Francisco J Lopez-Ruiz
- Centre for Crop and Disease Management, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
7
|
A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO 2 Revealed Different Responses in the Polyploid Coffea arabica and Its Diploid Progenitor C. canephora. Int J Mol Sci 2021; 22:ijms22063125. [PMID: 33803866 PMCID: PMC8003141 DOI: 10.3390/ijms22063125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the effect of extreme temperatures and elevated air (CO2) is crucial for mitigating the impacts of the coffee industry. In this work, leaf transcriptomic changes were evaluated in the diploid C. canephora and its polyploid C. arabica, grown at 25 °C and at two supra-optimal temperatures (37 °C, 42 °C), under ambient (aCO2) or elevated air CO2 (eCO2). Both species expressed fewer genes as temperature rose, although a high number of differentially expressed genes (DEGs) were observed, especially at 42 °C. An enrichment analysis revealed that the two species reacted differently to the high temperatures but with an overall up-regulation of the photosynthetic machinery until 37 °C. Although eCO2 helped to release stress, 42 °C had a severe impact on both species. A total of 667 photosynthetic and biochemical related-DEGs were altered with high temperatures and eCO2, which may be used as key probe genes in future studies. This was mostly felt in C. arabica, where genes related to ribulose-bisphosphate carboxylase (RuBisCO) activity, chlorophyll a-b binding, and the reaction centres of photosystems I and II were down-regulated, especially under 42°C, regardless of CO2. Transcriptomic changes showed that both species were strongly affected by the highest temperature, although they can endure higher temperatures (37 °C) than previously assumed.
Collapse
|
8
|
Serrato-Diaz LM, Mariño YA, Bayman P. Pathogens Causing Anthracnose and Fruit Rots of Coffee Associated with the Coffee Berry Borer and the Entomopathogenic Fungus Beauveria bassiana in Puerto Rico. PHYTOPATHOLOGY 2020; 110:1541-1552. [PMID: 32343616 DOI: 10.1094/phyto-02-20-0057-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fruit rots reduce coffee production worldwide. Eight Colletotrichum species have been reported to cause coffee fruit rots; the most important is C. kahawae, the cause of coffee berry disease (CBD) in Africa. It is unknown whether these fruit rot pathogens can be dispersed by the coffee berry borer (CBB, Hypothenemus hampei) or whether Beauveria bassiana (a natural enemy of CBB) might reduce coffee fruit rots. We identified pathogens causing coffee fruits rots in Puerto Rico and evaluated whether B. bassiana reduced fruit rot and whether CBB could disperse pathogens. A total of 2,333 coffee fruit with CBB damage were collected; of these, 1,197 had visible growth of B. bassiana. C. fructicola, C. siamense, C. theobromicola, and C. tropicale were isolated and identified from the fruit using morphological traits and phylogeny of three nuclear genes. All four species caused internal and external rot after inoculation of healthy green coffee fruit. Coffee fruit treated with B. bassiana had significantly less fruit rot than untreated fruit, suggesting B. bassiana can protect against fruit rot. To test whether B. bassiana had a protective effect, B. bassiana and Colletotrichum were coinoculated on coffee fruit. Fruit inoculated with both B. bassiana and Colletotrichum had significantly less rot than fruit inoculated with Colletotrichum alone. To test if CBBs dispersed the pathogens, CBBs were exposed to Colletotrichum conidia and placed on green fruit, which resulted in fruit rot. This study identifies new pathogens causing coffee fruit rot, shows that C. kahawae is not the only Colletotrichum that attacks green fruits, suggests a role for B. bassiana in disease management and demonstrates CBB can disperse the pathogens.
Collapse
Affiliation(s)
- Luz M Serrato-Diaz
- Department of Biology, University of Puerto Rico-Río Piedras, P.O. Box 23360, San Juan, PR 00931-3360, U.S.A
- U.S. Department of Agriculture-Agriculture Research Service-Tropical Agriculture Research Station (TARS), 2200 P.A. Campos Ave., Ste. 201, Mayagüez, PR 00680-5470, U.S.A
| | - Yobana A Mariño
- Department of Biology, University of Puerto Rico-Río Piedras, P.O. Box 23360, San Juan, PR 00931-3360, U.S.A
| | - Paul Bayman
- Department of Biology, University of Puerto Rico-Río Piedras, P.O. Box 23360, San Juan, PR 00931-3360, U.S.A
| |
Collapse
|
9
|
Plaumann PL, Koch C. The Many Questions about Mini Chromosomes in Colletotrichum spp. PLANTS 2020; 9:plants9050641. [PMID: 32438596 PMCID: PMC7284448 DOI: 10.3390/plants9050641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Many fungal pathogens carry accessory regions in their genome, which are not required for vegetative fitness. Often, although not always, these regions occur as relatively small chromosomes in different species. Such mini chromosomes appear to be a typical feature of many filamentous plant pathogens. Since these regions often carry genes coding for effectors or toxin-producing enzymes, they may be directly related to virulence of the respective pathogen. In this review, we outline the situation of small accessory chromosomes in the genus Colletotrichum, which accounts for ecologically important plant diseases. We summarize which species carry accessory chromosomes, their gene content, and chromosomal makeup. We discuss the large variation in size and number even between different isolates of the same species, their potential roles in host range, and possible mechanisms for intra- and interspecies exchange of these interesting genetic elements.
Collapse
|