1
|
Mei S, He G, Chen Z, Zhang R, Liao Y, Zhu M, Xu D, Shen Y, Zhou B, Wang K, Wang C, Zhu E, Chen C. Probiotic-Fermented Distillers Grain Alters the Rumen Microbiome, Metabolome, and Enzyme Activity, Enhancing the Immune Status of Finishing Cattle. Animals (Basel) 2023; 13:3774. [PMID: 38136811 PMCID: PMC10740804 DOI: 10.3390/ani13243774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
A total of 30 Simmental crossbred cattle (6.50 months old, 265.0 ± 22.48 kg) were randomly divided into three groups, with 10 heads per group, and fed for 45 days. The diet treatments consisted of the Control group without PFDG supplementation, the PFDG-15% group with 15% PFDG substituting for 15% concentrate, and PFDG-30% group with 30% PFDG substituting for 30% concentrate. The results showed that compared with the Control group, the average daily gain (ADG) of the cattle in the PFDG-30% group decreased significantly (0.890 vs. 0.768 kg/d, p = 0.005). The serum malondialdehyde content of cattle in the PFDG-15% and PFDG-30% groups decreased significantly (p = 0.047) compared to that of the Control group. However, the serum superoxide dismutase activity of cattle in the PFDG-30% group was significantly higher than that of the Control group (p = 0.047). Meanwhile, both the PFDG-15% and PFDG-30% groups (1758.47 vs. 2061.30 μg/mL) showed higher serum levels of immunoglobulin G, while the interleukin-10 concentration was lower in the PFDG-30% group (p = 0.027). In addition, the PFDG-15% and PFDG-30% groups shifted the rumen microbiota by improving the abundances of F082 (related to propionic acid production) and fiber-degrading bacteria (Lachnospiraceae_UGG-009 and Prevotellaceae_UCG-001) and reducing the abundance of the disease-associated bacteria Selenomonas. A Kyoto encyclopedia of genes and genomes (KEGG) analysis illustrated that three key metabolic pathways, including phenylalanine metabolism, pyrimidine metabolism, and tryptophan metabolism, were enriched in the PFDG-15% group, but eight key metabolic pathways, including arachidonic acid metabolism, were enriched in the PFDG-30% group. Importantly, both the PFDG-15% and PFDG-30% groups increased (p < 0.01) the activities of cellulase, lipase, and protease in the rumen. Finally, the different bacterial abundance in the rumen was associated with changes in the ADG, serum antioxidant capacity, immune status, rumen enzyme activity, and metabolites. These results suggest that PFDG alters rumen microbiome abundance, metabolome, and enzyme activity for enhancing serum antioxidant capacity and the immune status, but when the supplemental level reaches 30%, it has a negative effect on ADG and the anti-inflammatory factors in finishing cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (S.M.); (G.H.); (Z.C.); (R.Z.); (Y.L.); (M.Z.); (D.X.); (Y.S.); (B.Z.); (K.W.); (C.W.); (E.Z.)
| |
Collapse
|
2
|
Histology and Ultrastructure of the Esophagus in European Beaver ( Castor fiber) Displays Features Adapted to Seasonal Changes in Diet. Animals (Basel) 2023; 13:ani13040635. [PMID: 36830422 PMCID: PMC9951693 DOI: 10.3390/ani13040635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The European beaver is a herbivorous rodent whose diet changes seasonally, and in winter consists of large quantities of woody plants. It is distinguished among other mammals by a unique organization of the stomach that comprises the cardiogastric gland and by the unusual process of mucus formation in the gastric mucosa. The aim of study was to (i) characterize the structure of the beaver esophagus with particular attention to the mucosal epithelium; (ii) compare the histological structure of the esophagi collected in spring, summer, and winter; (iii) provide preliminary data on the structure of the esophagus in beaver fetuses. The study was conducted on esophagi of 18 adult beavers captured in Poland in April, August, and December, and on 3 fetal organs. The results obtained in adults show that the mucosa is lined with thick stratified squamous keratinized epithelium with a structure similar to that of the skin epidermis. Ultrastructural studies reveal the presence of multiple lamellar and non-lamellar bodies in granular cells, whose morphology and location gradually change while reaching the upper epithelial layers. The muscularis mucosa comprises a layer of longitudinally oriented bundles of smooth muscle cells. Both mucosa and submucosa do not comprise any glands. The thick muscularis externa consists mainly of internal circular and external longitudinal layers of striated muscle fibers. The keratinized layer of mucosa epithelium was 2-3-fold thicker in esophagi collected in winter than in those collected in spring and summer, while the epithelial cell layer thickness remained unchanged regardless of the season. Immunolabeling for proliferating cell nuclear antigen shows a higher index of epithelium proliferation in esophagi collected in winter than in spring and summer. No seasonal differences were noted in other layers of the esophagus. Fetal organs have epithelium covered with a keratinized layer, thinner than in adults, and the muscularis externa comprises both striated and smooth muscle cells.
Collapse
|
3
|
Altamia MA, Distel DL. Transport of symbiont-encoded cellulases from the gill to the gut of shipworms via the enigmatic ducts of Deshayes: a 174-year mystery solved. Proc Biol Sci 2022; 289:20221478. [PMID: 36350208 PMCID: PMC9653257 DOI: 10.1098/rspb.2022.1478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Shipworms (Bivalvia, Teredinidae) are the principal consumers of wood in marine environments. Like most wood-eating organisms, they digest wood with the aid of cellulolytic enzymes supplied by symbiotic bacteria. However, in shipworms the symbiotic bacteria are not found in the digestive system. Instead, they are located intracellularly in the gland of Deshayes, a specialized tissue found within the gills. It has been independently demonstrated that symbiont-encoded cellulolytic enzymes are present in the digestive systems and gills of two shipworm species, <i>Bankia setacea</i> and <i>Lyrodus pedicellatus</i>, confirming that these enzymes are transported from the gills to the lumen of the gut. However, the mechanism of enzyme transport from gill to gut remains incompletely understood. Recently, a mechanism was proposed by which enzymes are transported within bacterial cells that are expelled from the gill and transported to the mouth by ciliary action of the branchial or food grooves. Here we use <i>in situ</i> immunohistochemical methods to provide evidence for a different mechanism in the shipworm <i>B. setacea</i>, in which cellulolytic enzymes are transported via the ducts of Deshayes, enigmatic structures first described 174 years ago, but whose function have remained unexplained.
Collapse
Affiliation(s)
- Marvin A. Altamia
- Ocean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, MA, USA
| | - Daniel L. Distel
- Ocean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, MA, USA
| |
Collapse
|
4
|
Cabral L, Persinoti GF, Paixão DAA, Martins MP, Morais MAB, Chinaglia M, Domingues MN, Sforca ML, Pirolla RAS, Generoso WC, Santos CA, Maciel LF, Terrapon N, Lombard V, Henrissat B, Murakami MT. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun 2022; 13:629. [PMID: 35110564 PMCID: PMC8810776 DOI: 10.1038/s41467-022-28310-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of β-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy.
Collapse
Affiliation(s)
- Lucelia Cabral
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| | - Douglas A A Paixão
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Marcele P Martins
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mariana Chinaglia
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mauricio L Sforca
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Wesley C Generoso
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Clelton A Santos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Lucas F Maciel
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Nicolas Terrapon
- The Institut National de la Recherche Agronomique, USC 1408 AFMB, 13288, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Vincent Lombard
- The Institut National de la Recherche Agronomique, USC 1408 AFMB, 13288, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| |
Collapse
|