1
|
Robison ZL, Ren Q, Zhang Z. How to Survive without Water: A Short Lesson on the Desiccation Tolerance of Budding Yeast. Int J Mol Sci 2024; 25:7514. [PMID: 39062766 PMCID: PMC11277543 DOI: 10.3390/ijms25147514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Water is essential to all life on earth. It is a major component that makes up living organisms and plays a vital role in multiple biological processes. It provides a medium for chemical and enzymatic reactions in the cell and is a major player in osmoregulation and the maintenance of cell turgidity. Despite this, many organisms, called anhydrobiotes, are capable of surviving under extremely dehydrated conditions. Less is known about how anhydrobiotes adapt and survive under desiccation stress. Studies have shown that morphological and physiological changes occur in anhydrobiotes in response to desiccation stress. Certain disaccharides and proteins, including heat shock proteins, intrinsically disordered proteins, and hydrophilins, play important roles in the desiccation tolerance of anhydrobiotes. In this review, we summarize the recent findings of desiccation tolerance in the budding yeast Saccharomyces cerevisiae. We also propose that the yeast under desiccation could be used as a model to study neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (Z.L.R.); (Q.R.)
| |
Collapse
|
2
|
Bierenbroodspot MJ, Darienko T, de Vries S, Fürst-Jansen JMR, Buschmann H, Pröschold T, Irisarri I, de Vries J. Phylogenomic insights into the first multicellular streptophyte. Curr Biol 2024; 34:670-681.e7. [PMID: 38244543 PMCID: PMC10849092 DOI: 10.1016/j.cub.2023.12.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Thomas Pröschold
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Innsbruck, Research Department for Limnology, 5310 Mondsee, Austria
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
3
|
Arzac MI, Miranda-Apodaca J, Gasulla F, Arce-Guerrero M, Fernández-Marín B, García-Plazaola JI. Acquisition of Desiccation Tolerance Unveiled: Polar Lipid Profiles of Streptophyte Algae Offer Insights. PHYSIOLOGIA PLANTARUM 2023; 175:e14073. [PMID: 38148218 DOI: 10.1111/ppl.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
Terrestrialization by photosynthetic eukaryotes took place in the two branches of green microalgae: Chlorophyta and Charophyta. Within the latter, the paraphyletic streptophytic algae divide into two clades. These are named Klebsormidiophyceae-Chlorokybophyceae-Mesostigmatophyceae (KCM), which is the oldest, and Zygnematophyceae-Coleochaetophyceae-Charophyceae (ZCC), which contains the closest relatives of vascular plants. Terrestrialization required the emergence of adaptations in response to new challenges, such as irradiance, temperature oscillations and water deprivation. In this study, we evaluated lipid composition in species representative of distinct phylogenetic clusters within Charophyta and Chlorophyta. We aim to study whether the inherent thylakoid lipid composition, as well as its adaptability in response to desiccation, were fundamental factors for the evolutionary history of terrestrial plants. The results showed that the lipid composition was similar to that found in flowering land plants, differing only in betaine lipids. Likewise, the largest constitutive pool of oligogalactolipids (OGL) was found only in the fully desiccation-tolerant species Klebsormidium nitens. After desiccation, the content of polar lipids decreased in all species. Conversely, the content of OGL increased, particularly trigalactosyldiacylglycerol and tetragalactosyldiacylglycerol in the ZCC clade. The analysis of the molecular species composition of the newly formed OGL may suggest a different biosynthetic route for the KCM and ZCC clades. We speculate that the appearance of a new OGL synthesis pathway, which eventually arose during the streptophyte evolutionary process, endowed algae with a much more dynamic regulation of thylakoid composition in response to stress, which ultimately contributed to the colonization of terrestrial habitats.
Collapse
Affiliation(s)
- Miren Irati Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - María Arce-Guerrero
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), La Laguna, Canary Islands, Spain
| | | |
Collapse
|
4
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
5
|
Serrano-Pérez E, Romero-Losada AB, Morales-Pineda M, García-Gómez ME, Couso I, García-González M, Romero-Campero FJ. Transcriptomic and Metabolomic Response to High Light in the Charophyte Alga Klebsormidium nitens. FRONTIERS IN PLANT SCIENCE 2022; 13:855243. [PMID: 35599877 PMCID: PMC9121098 DOI: 10.3389/fpls.2022.855243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 05/04/2023]
Abstract
The characterization of the molecular mechanisms, such as high light irradiance resistance, that allowed plant terrestralization is a cornerstone in evolutionary studies since the conquest of land by plants played a pivotal role in life evolution on Earth. Viridiplantae or the green lineage is divided into two clades, Chlorophyta and Streptophyta, that in turn splits into Embryophyta or land plants and Charophyta. Charophyta are used in evolutionary studies on plant terrestralization since they are generally accepted as the extant algal species most closely related to current land plants. In this study, we have chosen the facultative terrestrial early charophyte alga Klebsormidium nitens to perform an integrative transcriptomic and metabolomic analysis under high light in order to unveil key mechanisms involved in the early steps of plants terrestralization. We found a fast chloroplast retrograde signaling possibly mediated by reactive oxygen species and the inositol polyphosphate 1-phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) pathways inducing gene expression and accumulation of specific metabolites. Systems used by both Chlorophyta and Embryophyta were activated such as the xanthophyll cycle with an accumulation of zeaxanthin and protein folding and repair mechanisms constituted by NADPH-dependent thioredoxin reductases, thioredoxin-disulfide reductases, and peroxiredoxins. Similarly, cyclic electron flow, specifically the pathway dependent on proton gradient regulation 5, was strongly activated under high light. We detected a simultaneous co-activation of the non-photochemical quenching mechanisms based on LHC-like stress related (LHCSR) protein and the photosystem II subunit S that are specific to Chlorophyta and Embryophyta, respectively. Exclusive Embryophyta systems for the synthesis, sensing, and response to the phytohormone auxin were also activated under high light in K. nitens leading to an increase in auxin content with the concomitant accumulation of amino acids such as tryptophan, histidine, and phenylalanine.
Collapse
Affiliation(s)
- Emma Serrano-Pérez
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - Ana B. Romero-Losada
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - María Morales-Pineda
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - M. Elena García-Gómez
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Inmaculada Couso
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Mercedes García-González
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Francisco J. Romero-Campero
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
- *Correspondence: Francisco J. Romero-Campero,
| |
Collapse
|
6
|
Microbial Diversity in Subarctic Biocrusts from West Iceland following an Elevation Gradient. Microorganisms 2021; 9:microorganisms9112195. [PMID: 34835321 PMCID: PMC8624075 DOI: 10.3390/microorganisms9112195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
Biological soil crusts (biocrusts) are essential communities of organisms in the Icelandic soil ecosystem, as they prevent erosion and cryoturbation and provide nutrients to vascular plants. However, biocrust microbial composition in Iceland remains understudied. To address this gap in knowledge, we applied high-throughput sequencing to study microbial community composition in biocrusts collected along an elevation gradient (11–157 m a.s.l.) stretching away perpendicular to the marine coast. Four groups of organisms were targeted: bacteria and cyanobacteria (16S rRNA gene), fungi (transcribed spacer region), and other eukaryotes (18S rRNA gene). The amplicon sequencing of the 16S rRNA gene revealed the dominance of Proteobacteria, Bacteroidetes, and Actinobacteria. Within the cyanobacteria, filamentous forms from the orders Synechococcales and Oscillatoriales prevailed. Furthermore, fungi in the biocrusts were dominated by Ascomycota, while the majority of reads obtained from sequencing of the 18S rRNA gene belonged to Archaeplastida. In addition, microbial photoautotrophs isolated from the biocrusts were assigned to the cyanobacterial genera Phormidesmis, Microcoleus, Wilmottia, and Oscillatoria and to two microalgal phyla Chlorophyta and Charophyta. In general, the taxonomic diversity of microorganisms in the biocrusts increased following the elevation gradient and community composition differed among the sites, suggesting that microclimatic and soil parameters might shape biocrust microbiota.
Collapse
|
7
|
Caisová L. Draparnaldia: a chlorophyte model for comparative analyses of plant terrestrialization. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3305-3313. [PMID: 32100007 DOI: 10.1093/jxb/eraa102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/25/2020] [Indexed: 05/22/2023]
Abstract
It is generally accepted that land plants evolved from streptophyte algae. However, there are also many chlorophytes (a sister group of streptophyte algae and land plants) that moved to terrestrial habitats and even resemble mosses. This raises the question of why no land plants evolved from chlorophytes. In order to better understand what enabled streptophyte algae to conquer the land, it is necessary to study the chlorophytes as well. This review will introduce the freshwater filamentous chlorophyte alga Draparnaldia sp. (Chaetophorales, Chlorophyceae) as a model for comparative analyses between these two lineages. It will also focus on current knowledge about the evolution of morphological complexity in chlorophytes versus streptophytes and their respective morphological/behavioural adaptations to semi-terrestrial habitats, and will show why Draparnaldia is needed as a new model system.
Collapse
Affiliation(s)
- Lenka Caisová
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, UK
| |
Collapse
|
8
|
Becker B, Feng X, Yin Y, Holzinger A. Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Viridiplantae. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3270-3278. [PMID: 32107542 PMCID: PMC7289719 DOI: 10.1093/jxb/eraa105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
The present review summarizes the effects of desiccation in streptophyte green algae, as numerous experimental studies have been performed over the past decade particularly in the early branching streptophyte Klebsormidium sp. and the late branching Zygnema circumcarinatum. The latter genus gives its name to the Zygenmatophyceae, the sister group to land plants. For both organisms, transcriptomic investigations of desiccation stress are available, and illustrate a high variability in the stress response depending on the conditions and the strains used. However, overall, the responses of both organisms to desiccation stress are very similar to that of land plants. We highlight the evolution of two highly regulated protein families, the late embryogenesis abundant (LEA) proteins and the major intrinsic protein (MIP) family. Chlorophytes and streptophytes encode LEA4 and LEA5, while LEA2 have so far only been found in streptophyte algae, indicating an evolutionary origin in this group. Within the MIP family, a high transcriptomic regulation of a tonoplast intrinsic protein (TIP) has been found for the first time outside the embryophytes in Z. circumcarinatum. The MIP family became more complex on the way to terrestrialization but simplified afterwards. These observations suggest a key role for water transport proteins in desiccation tolerance of streptophytes.
Collapse
Affiliation(s)
| | - Xuehuan Feng
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yanbin Yin
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Innsbruck, Austria
- Correspondence:
| |
Collapse
|
9
|
Steiner P, Obwegeser S, Wanner G, Buchner O, Lütz-Meindl U, Holzinger A. Cell Wall Reinforcements Accompany Chilling and Freezing Stress in the Streptophyte Green Alga Klebsormidium crenulatum. FRONTIERS IN PLANT SCIENCE 2020; 11:873. [PMID: 32714344 PMCID: PMC7344194 DOI: 10.3389/fpls.2020.00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/28/2020] [Indexed: 05/15/2023]
Abstract
Adaptation strategies in freezing resistance were investigated in Klebsormidium crenulatum, an early branching streptophyte green alga related to higher plants. Klebsormidium grows naturally in unfavorable environments like alpine biological soil crusts, exposed to desiccation, high irradiation and cold stress. Here, chilling and freezing induced alterations of the ultrastructure were investigated. Control samples (kept at 20°C) were compared to chilled (4°C) as well as extracellularly frozen algae (-2 and -4°C). A software-controlled laboratory freezer (AFU, automatic freezing unit) was used for algal exposure to various temperatures and freezing was manually induced. Samples were then high pressure frozen and cryo-substituted for electron microscopy. Control cells had a similar appearance in size and ultrastructure as previously reported. While chilling stressed algae only showed minor ultrastructural alterations, such as small inward facing cell wall plugs and minor alterations of organelles, drastic changes of the cell wall and in organelle distribution were found in extracellularly frozen samples (-2°C and -4°C). In frozen samples, the cytoplasm was not retracted from the cell wall, but extensive three-dimensional cell wall layers were formed, most prominently in the corners of the cells, as determined by FIB-SEM and TEM tomography. Similar alterations/adaptations of the cell wall were not reported or visualized in Klebsormidium before, neither in controls, nor during other stress scenarios. This indicates that the cell wall is reinforced by these additional wall layers during freezing stress. Cells allowed to recover from freezing stress (-2°C) for 5 h at 20°C lost these additional cell wall layers, suggesting their dynamic formation. The composition of these cell wall reinforcement areas was investigated by immuno-TEM. In addition, alterations of structure and distribution of mitochondria, dictyosomes and a drastically increased endoplasmic reticulum were observed in frozen cells by TEM and TEM tomography. Measurements of the photosynthetic oxygen production showed an acclimation of Klebsormidium to chilling stress, which correlates with our findings on ultrastructural alterations of morphology and distribution of organelles. The cell wall reinforcement areas, together with the observed changes in organelle structure and distribution, are likely to contribute to maintenance of an undisturbed cell physiology and to adaptation to chilling and freezing stress.
Collapse
Affiliation(s)
- Philip Steiner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sabrina Obwegeser
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Ludwig-Maximilians-University, Munich, Germany
| | - Othmar Buchner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
- *Correspondence: Andreas Holzinger,
| |
Collapse
|