1
|
Zeng H, Li C, Zhang J, Liang B, Mei H, Wu Q. Fatal Necrotizing Enterocolitis in Neonate Caused by Cronobacter sakazakii Sequence Type 64 Strain of CRISPR Sublineage b. Emerg Infect Dis 2023; 29:1917-1920. [PMID: 37610257 PMCID: PMC10461654 DOI: 10.3201/eid2909.230537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
We report fatal neonatal necrotizing enterocolitis in China caused by Cronobacter sakazakii capsular profile K1:CA1, sequence type 64, and CRISPR type 197. Phylodynamic analyses indicated that the strain originated from the ancient, widespread, and antimicrobial drug-sensitive CRISPR sublineage b. Enhanced surveillance and pathogenesis research on this organism are required.
Collapse
Affiliation(s)
| | | | - Jumei Zhang
- Guangdong University of Technology, Guangzhou, China (H. Zeng)
- Institute of Microbiology, Guangzhou (H. Zeng, C. Li, J. Zhang, Q. Wu)
- Guangzhou Women and Children’s Medical Center, Guangzhou (B. Liang)
| | - Bingshao Liang
- Guangdong University of Technology, Guangzhou, China (H. Zeng)
- Institute of Microbiology, Guangzhou (H. Zeng, C. Li, J. Zhang, Q. Wu)
- Guangzhou Women and Children’s Medical Center, Guangzhou (B. Liang)
| | - Hanjie Mei
- Guangdong University of Technology, Guangzhou, China (H. Zeng)
- Institute of Microbiology, Guangzhou (H. Zeng, C. Li, J. Zhang, Q. Wu)
- Guangzhou Women and Children’s Medical Center, Guangzhou (B. Liang)
| | - Qingping Wu
- Guangdong University of Technology, Guangzhou, China (H. Zeng)
- Institute of Microbiology, Guangzhou (H. Zeng, C. Li, J. Zhang, Q. Wu)
- Guangzhou Women and Children’s Medical Center, Guangzhou (B. Liang)
| |
Collapse
|
2
|
Han X, Zhou X, Pei Z, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Characterization of CRISPR-Cas systems in Bifidobacterium breve. Microb Genom 2022; 8. [PMID: 35451949 PMCID: PMC9453068 DOI: 10.1099/mgen.0.000812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) system is an important adaptive immune system for bacteria to resist foreign DNA infection, which has been widely used in genotyping and gene editing. To provide a theoretical basis for the application of the CRISPR-Cas system in Bifidobacterium breve, the occurrence and diversity of CRISPR-Cas systems were analysed in 150 B. breve strains. Specifically, 47 % (71/150) of B. breve genomes possessed the CRISPR-Cas system, and type I-C CRISPR-Cas system was the most widely distributed among those strains. The spacer sequences present in B. breve can be used as a genotyping marker. Additionally, the phage assembly-related proteins were important targets of the type I-C CRISPR-Cas system in B. breve, and the protospacer adjacent motif sequences were further characterized in B. breve type I-C system as 5'-TTC-3'. All these results might provide a molecular basis for the development of endogenous genome editing tools in B. breve.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xingya Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Co., Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
| |
Collapse
|
3
|
Kirui CK, Njeru EM, Runo S. Diversity and Phosphate Solubilization Efficiency of Phosphate Solubilizing Bacteria Isolated from Semi-Arid Agroecosystems of Eastern Kenya. Microbiol Insights 2022; 15:11786361221088991. [PMID: 35464120 PMCID: PMC9019392 DOI: 10.1177/11786361221088991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Phosphorus (P) is a major nutrient required for plant growth but it forms complexes with other elements in soil upon application. A cost-effective way of availing P to plants is by use of Phosphate Solubilizing Bacteria (PSB). There is a wide range of PSB suited for diverse agro-ecologies. A large part of Eastern Kenya especially the lower altitude regions are semi-arid with nutrient depleted soils and predominated by low-income smallholders farmers who do not afford costly inorganic fertilizers. To alleviate poor soil nutrition in this agroecosystem, we sought to study the diversity of phosphate solubilizing bacteria and their phosphate solubilization efficiency. The bacteria were selectively isolated in Pikovskaya’s agar media. Bacterial colonies were enumerated as Colony Forming Units and morphological characterization determined by analyzing morphological characteristics. Genetic characterization was determined based on sequencing of 16S rRNA. A total of 71 PSB were isolated and they were placed into 23 morphological groups. Correlation analysis showed a negative correlation between phosphate solubilizing bacteria and the levels of phosphorus, iron, calcium, magnesium and soil pH. Analysis of 16S rRNA sequences revealed that the genetic sequences of the isolates matched the strains from the genera Burkholderia, Pseudomonas, Bacillus, Enterobacter, Pantoea, Paraburkholderia, Cronobacter, Ralstonia, Curtobacterium, and Massilia deposited in NCBI Database. Analysis of Molecular Variance showed that variation within populations was higher than that of among populations. Phosphate solubilization index values ranged between 1.143 and 5.883. Findings on biodiversity of phosphate solubilizing bacteria led to identification of 10 candidate isolates for plant growth improvement and subsequently, bio-fertilizer development.
Collapse
Affiliation(s)
- Charles Kibet Kirui
- Department of Biochemistry, Microbiology & Biotechnology, Kenyatta University, Kenya
| | - Ezekiel Mugendi Njeru
- Department of Biochemistry, Microbiology & Biotechnology, Kenyatta University, Kenya
| | - Steven Runo
- Department of Biochemistry, Microbiology & Biotechnology, Kenyatta University, Kenya
| |
Collapse
|
4
|
Bai Z, Zhang S, Wang X, Aslam MZ, Wang W, Li H, Dong Q. Genotyping Based on CRISPR Loci Diversity and Pathogenic Potential of Diarrheagenic Escherichia coli. Front Microbiol 2022; 13:852662. [PMID: 35308371 PMCID: PMC8924505 DOI: 10.3389/fmicb.2022.852662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Diarrheagenic Escherichia coli (DEC) can cause epidemic diarrhea worldwide. The pathogenic potential of different strains is diverse and the continuous emergence of pathogenic strains has brought serious harm to public health. Accurately distinguishing and identifying DEC with different virulence is necessary for epidemiological surveillance and investigation. Clustered regularly interspaced short palindromic repeats (CRISPR) typing is a new molecular method that can distinguish pathogenic bacteria excellently and has shown great promise in DEC typing. The purpose of this study was to investigate the discrimination of CRISPR typing method for DEC and explore the pathogenicity potential of DEC based on CRISPR types (CT). The whole genome sequences of 789 DEC strains downloaded from the database were applied CRISPR typing and serotyping. The D value (Simpson’s index) with 0.9709 determined that CRISPR typing had a higher discrimination. Moreover, the same H antigen strains with different O seemed to share more identical spacers. Further analyzing the strains CRISPR types and the number of virulence genes, it was found that there was a significant correlation between the CRISPR types and the number of virulence genes (p < 0.01). The strains with the largest number of virulence genes concentrated in CT25 and CT56 and the number of virulence genes in CT264 was the least, indicating that the pathway potential of different CRISPR types was variable. Combined with the Caco-2 cell assay of the laboratory strains, the invasion capacity of STEC strains of different CRISPR types was different and there was no significant difference in the invasion rate between different CRISPR type strains (p > 0.05). In the future, with the increase of the number of strains that can be studied experimentally, the relationship between CRISPR types and adhesion and invasion capacities will be further clarified.
Collapse
Affiliation(s)
- Zhiye Bai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shiqin Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Muhammad Zohaib Aslam
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality and Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongmei Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Wang L, Forsythe SJ, Yang X, Fu S, Man C, Jiang Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J Dairy Sci 2021; 104:11348-11367. [PMID: 34364644 DOI: 10.3168/jds.2021-20591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Stephen J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottingham, United Kingdom, NG12 5GY
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
6
|
Shami A, Mostafa M, Abd-Elsalam KA. CRISPR applications in plant bacteriology: today and future perspectives. CRISPR AND RNAI SYSTEMS 2021:551-577. [DOI: 10.1016/b978-0-12-821910-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Holý O, Parra-Flores J, Lepuschitz S, Alarcón-Lavín MP, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Ruppitsch W, Forsythe S. Molecular Characterization of Cronobacter sakazakii Strains Isolated from Powdered Milk. Foods 2020; 10:E20. [PMID: 33374633 PMCID: PMC7822459 DOI: 10.3390/foods10010020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
Cronobacter spp. are opportunistic pathogens of the Enterobacteriaceae family. The organism causes infections in all age groups, but the most serious cases occur in outbreaks related to neonates with meningitis and necrotizing enterocolitis. The objective was to determine the in silico and in vitro putative virulence factors of six Cronobacter sakazakii strains isolated from powdered milk (PM) in the Czech Republic. Strains were identified by MALDI-TOF MS and whole-genome sequencing (WGS). Virulence and resistance genes were detected with the Ridom SeqSphere+ software task template and the Comprehensive Antibiotic Resistance Database (CARD) platform. Adherence and invasion ability were performed using the mouse neuroblastoma (N1E-115 ATCCCRL-2263) cell line. The CRISPR-Cas system was searched with CRISPRCasFinder. Core genome MLST identified four different sequence types (ST1, ST145, ST245, and ST297) in six isolates. Strains 13755-1B and 1847 were able to adhere in 2.2 and 3.2 × 106 CFU/mL, while 0.00073% invasion frequency was detected only in strain 1847. Both strains 13755-1B and 1847 were positive for three (50.0%) and four virulence genes, respectively. The cpa gene was not detected. Twenty-eight genes were detected by WGS and grouped as flagellar or outer membrane proteins, chemotaxis, hemolysins, and invasion, plasminogen activator, colonization, transcriptional regulator, and survival in macrophages. The colistin-resistance-encoding mcr-9.1 and cephalothin-resis-encoding blaCSA genes and IncFII(pECLA) and IncFIB(pCTU3) plasmids were detected. All strains exhibited CRISPR matrices and four of them two type I-E and I-F matrices. Combined molecular methodologies improve Cronobacter spp. decision-making for health authorities to protect the population.
Collapse
Affiliation(s)
- Ondrej Holý
- Department of Public Health, Palacký University Olomouc, 77515 Olomouc, Czech Republic
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, 1220 Vienna, Austria; (S.L.); (W.R.)
| | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (A.C.-C.); (J.X.-C.); (J.M.-R.)
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (A.C.-C.); (J.X.-C.); (J.M.-R.)
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (A.C.-C.); (J.X.-C.); (J.M.-R.)
- Biological Sciences Graduate Program, Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, 1220 Vienna, Austria; (S.L.); (W.R.)
| | | |
Collapse
|
8
|
Li C, Zeng H, Zhang J, Luo D, Chen M, Lei T, Yang X, Wu H, Cai S, Ye Y, Ding Y, Wang J, Wu Q. Cronobacter spp. isolated from aquatic products in China: Incidence, antibiotic resistance, molecular characteristic and CRISPR diversity. Int J Food Microbiol 2020; 335:108857. [PMID: 32947144 DOI: 10.1016/j.ijfoodmicro.2020.108857] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/20/2022]
Abstract
Cronobacter species (Cronobacter spp.) are important foodborne pathogens that can infect and cause serious life-threatening diseases in infants and immunocompromised elderly. This study aimed to acquire data on Cronobacter spp. contamination of aquatic products in China from 2011 to 2016. In total, 800 aquatic products were tested, and the overall contamination rate for Cronobacter spp. was 3.9% (31/800). The average contamination level of the positive samples was 2.05 MPN/g. Four species and nine serotypes were identified among 33 isolates, of which the C. sakazakii serogroup O1 (n = 9) was the primary serotype. The majority of Cronobacter spp. strains harbored highest resistance against cephalothin (84.8%), followed by tetracycline (6.1%), trimethoprim/sulfameth-oxazole (3.0%) and chloramphenicol (3.0%). Two isolates were resistant to three antibiotics. In total, 26 sequence types and 33 CRISPR types (including 6 new STs and 26 new CTs) were identified, which indicates the extremely high diversity of Cronobacter spp. in aquatic products. Pathogenic C. sakazakii ST4, ST1, and C. malonaticus ST7 were also observed. Overall, this large-scale study revealed the relatively low prevalence and high genetic diversity of Cronobacter spp. in aquatic products in China, and the findings provide valuable information that can guide the establishment of effective measures for the control and precaution of Cronobacter spp. in aquatic products during production processes.
Collapse
Affiliation(s)
- Chengsi Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Haiyan Zeng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Dandan Luo
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Haoming Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Shuzhen Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Yingwang Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science &Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
9
|
Prevalence, genetic analysis and CRISPR typing of Cronobacter spp. isolated from meat and meat products in China. Int J Food Microbiol 2020; 321:108549. [PMID: 32062304 DOI: 10.1016/j.ijfoodmicro.2020.108549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
Abstract
Cronobacter spp. are important foodborne pathogens that infections occur in all age groups, especially cause serious life-threatening diseases in infants. This study aimed to acquire data on Cronobacter spp. contamination of meat and meat products (n = 588) in China during 2011 to 2016, and investigated the use of CRISPR typing technology as an approach for characterizing the genetics of Cronobacter spp. The overall contamination rate for Cronobacter spp. was determined to be 9.18% (54/588). Of the positive samples, 90.74% (49/54) had <10 MPN/g, with duck samples had a relatively high contamination rate (15.69%, 8/51) and highest contamination level (28.90 MPN/g). Four species and nine serotypes were identified among 69 isolates, of which C. sakazakii was the major species (n = 50) and C. sakazakii serogroup O1 and O2 (n = 17) were the primary serotypes. The majority of Cronobacter spp. strains were found to be susceptible to most antibiotics except exhibited high resistance to cephalothin (76.81%, 53/69), and total two multi-drug resistant C. sakazakii strains were isolated from duck. The genetic diversity of Cronobacter spp. was remarkably high, as evidenced by the identification of 40 sequence types (STs) and 60 CRISPR types (CTs). C. sakazakii ST64 (n = 7) was the predominant genotype and was further divided into two sub-lineages based on CRISPR diversity, showing different antibiotic resistance profile. These results demonstrate that CRISPR typing results have a good correspondence with bacterial phenotypes, and it will be a tremendously useful approach for elucidating inter-subtyping during molecular epidemiological investigations while interpreting the divergent evolution of Cronobacter. The presence of Cronobacter spp. in meat and meat product is a potential threat to human public health.
Collapse
|