1
|
Shi B, Zhu C, Wang X, Qi Y, Hu J, Liu X, Wang J, Hao Z, Zhao Z, Zhang X. microRNA Temporal-Specific Expression Profiles Reveal longissimus dorsi Muscle Development in Tianzhu White Yak. Int J Mol Sci 2024; 25:10151. [PMID: 39337635 PMCID: PMC11432130 DOI: 10.3390/ijms251810151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As a class of regulatory factors, microRNAs (miRNAs) play an important role in regulating normal muscle development and fat deposition. Muscle and adipose tissues, as major components of the animal organism, are also economically important traits in livestock production. However, the effect of miRNA expression profiles on the development of muscle and adipose tissues in yak is currently unknown. In this study, we performed RNA sequencing (RNA-Seq) on Tianzhu white yak longissimus dorsi muscle tissue obtained from calves (6 months of age, M6, n = 6) and young (30 months of age, M30, n = 6) and adult yak (54 months of age, M54, n = 6) to identify which miRNAs are differentially expressed and to investigate their temporal expression profiles, establishing a regulatory network of miRNAs associated with the development of muscle and adipose. The results showed that 1191 miRNAs and 22061 mRNAs were screened across the three stages, of which the numbers of differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) were 225 and 450, respectively. The expression levels of the nine DE miRNAs were confirmed using a reverse transcription quantitative PCR (RT-qPCR) assay, and the trend of the assay results was generally consistent with the trend of the transcriptome profiles. Based on the expression trend, DE miRNAs were categorized into eight different expression patterns. Regarding the expression of DE miRNAs in sub-trends Profile 1 and Profile 2 (p < 0.05), the gene expression patterns were upregulated (87 DE miRNAs). Gene ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) analyses showed that the identified DE miRNAs and DE mRNAs were enriched in pathway entries associated with muscle and intramuscular fat (IMF) growth and development. On this basis, we constructed a DE miRNA-mRNA interaction network. We found that some DE mRNAs of interest overlapped with miRNA target genes, such as ACSL3, FOXO3, FBXO30, FGFBP4, TSKU, MYH10 (muscle development), ACOX1, FADS2, EIF4E2, SCD1, EL0VL5, and ACACB (intramuscular fat deposition). These results provide a valuable resource for further studies on the molecular mechanisms of muscle tissue development in yak and also lay a foundation for investigating the interactions between genes and miRNAs.
Collapse
Affiliation(s)
- Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Chune Zhu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangyan Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Youpeng Qi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolan Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Oboh MA, Morenikeji OB, Ojurongbe O, Thomas BN. Transcriptomic analyses of differentially expressed human genes, micro RNAs and long-non-coding RNAs in severe, symptomatic and asymptomatic malaria infection. Sci Rep 2024; 14:16901. [PMID: 39043812 PMCID: PMC11266512 DOI: 10.1038/s41598-024-67663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Malaria transmission and endemicity in Africa remains hugely disproportionate compared to the rest of the world. The complex life cycle of P. falciparum (Pf) between the vertebrate human host and the anopheline vector results in differential expression of genes within and between hosts. An in-depth understanding of Pf interaction with various human genes through regulatory elements will pave way for identification of newer tools in the arsenal for malaria control. Therefore, the regulatory elements (REs) involved in the over- or under-expression of various host immune genes hold the key to elucidating alternative control measures that can be applied for disease surveillance, prompt diagnosis and treatment. We carried out an RNAseq analysis to identify differentially expressed genes and network elucidation of non-coding RNAs and target genes associated with immune response in individuals with different clinical outcomes. Raw RNAseq datasets, retrieved for analyses include individuals with severe (Gambia-20), symptomatic (Burkina Faso-15), asymptomatic (Mali-16) malaria as well as uninfected controls (Tanzania-20; Mali-36). Of the total 107 datasets retrieved, we identified 5534 differentially expressed genes (DEGs) among disease and control groups. A peculiar pattern of DEGs was observed, with individuals presenting with severe/symptomatic malaria having the highest and most diverse upregulated genes, while a reverse phenomenon was recorded among asymptomatic and uninfected individuals. In addition, we identified 141 differentially expressed micro RNA (miRNA), of which 78 and 63 were upregulated and downregulated respectively. Interactome analysis revealed a moderate interaction between DEGs and miRNAs. Of all identified miRNA, five were unique (hsa-mir-32, hsa-mir-25, hsa-mir-221, hsa-mir-29 and hsa-mir-148) because of their connectivity to several genes, including hsa-mir-221 connected to 16 genes. Six-hundred and eight differentially expressed long non coding RNA (lncRNA) were also identified, including SLC7A11, LINC01524 among the upregulated ones. Our study provides important insight into host immune genes undergoing differential expression under different malaria conditions. It also identified unique miRNAs and lncRNAs that modify and/or regulate the expression of various immune genes. These regulatory elements we surmise, have the potential to serve a diagnostic purpose in discriminating between individuals with severe/symptomatic malaria and those with asymptomatic infection or uninfected, following further clinical validation from field isolates.
Collapse
Affiliation(s)
- Mary A Oboh
- Department of Biomedical Sciences, Rochester Institute of Technology, 153 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh Bradford, Bradford, PA, USA
| | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Bolaji N Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, 153 Lomb Memorial Drive, Rochester, NY, 14623, USA.
| |
Collapse
|
3
|
Differential Expression of MicroRNAs in Dark-Cutting Meat from Beef Carcasses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
“Dark-cutting” meat in beef carcasses can result from conditions such as long-term stress and depleted glycogen stores, but some aspects of the physiological mechanisms that cause dark-cutting phenotypes remain poorly understood. Certain responses to stress factors in fully developed tissues are known to be regulated by specific microRNAs. We investigated microRNA expression in Longissimus lumborum biopsies from carcasses derived from a contemporary group of 78 steers from which a high incidence of dark-cutting meat occurred. Our objective was to identify any potential microRNA signatures that reflect the impact of environmental factors and stresses on genetic signaling networks and result in dark-cutting beef (also known as dark, firm, and dry, or DFD) in some animals. MicroRNA expression was quantified by Illumina NextSeq small RNA sequencing. When RNA extracts from DFD muscle biopsy samples were compared with normal, non-DFD (NON) samples, 29 differentially expressed microRNAs were identified in which expression was at least 20% different in the DFD samples (DFD/NON fold ratio ≤0.8 or ≥1.2). When correction for multiple testing was applied, a single microRNA bta-miR-2422 was identified at a false discovery probability (FDR) of 5.4%. If FDR was relaxed to 30%, additional microRNAs were differentially expressed (bta-miR-10174-5p, bta-miR-1260b, bta-miR-144, bta-miR-142-5p, bta-miR-2285at, bta-miR-2285e, bta-miR-3613a). These microRNAs may play a role in regulating aspects of stress responses that ultimately result in dark-cutting beef carcasses.
Collapse
|
4
|
Regulatory network of miRNA, lncRNA, transcription factor and target immune response genes in bovine mastitis. Sci Rep 2021; 11:21899. [PMID: 34753991 PMCID: PMC8578396 DOI: 10.1038/s41598-021-01280-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Pre- and post-transcriptional modifications of gene expression are emerging as foci of disease studies, with some studies revealing the importance of non-coding transcripts, like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). We hypothesize that transcription factors (TFs), lncRNAs and miRNAs modulate immune response in bovine mastitis and could potentially serve as disease biomarkers and/or drug targets. With computational analyses, we identified candidate genes potentially regulated by miRNAs and lncRNAs base pair complementation and thermodynamic stability of binding regions. Remarkably, we found six miRNAs, two being bta-miR-223 and bta-miR-24-3p, to bind to several targets. LncRNAs NONBTAT027932.1 and XR_003029725.1, were identified to target several genes. Functional and pathway analyses revealed lipopolysaccharide-mediated signaling pathway, regulation of chemokine (C-X-C motif) ligand 2 production and regulation of IL-23 production among others. The overarching interactome deserves further in vitro/in vivo explication for specific molecular regulatory mechanisms during bovine mastitis immune response and could lay the foundation for development of disease markers and therapeutic intervention.
Collapse
|
5
|
Morenikeji OB, Wallace M, Strutton E, Bernard K, Yip E, Thomas BN. Integrative Network Analysis of Predicted miRNA-Targets Regulating Expression of Immune Response Genes in Bovine Coronavirus Infection. Front Genet 2020; 11:584392. [PMID: 33193717 PMCID: PMC7554596 DOI: 10.3389/fgene.2020.584392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Bovine coronavirus (BCoV) infection that causes disease outbreaks among farm animals, resulting in significant economic losses particularly in the cattle industry, has the potential to become zoonotic. miRNAs, which are short non-coding segments of RNA that inhibits the expression of their target genes, have been identified as potential biomarkers and drug targets, though this potential in BCoV remains largely unknown. We hypothesize that certain miRNAs could simultaneously target multiple genes, are significantly conserved across many species, thereby demonstrating the potential to serve as diagnostic or therapeutic tools for bovine coronavirus infection. To this end, we utilized different existing and publicly available computational tools to conduct system analysis predicting important miRNAs that could affect BCoV pathogenesis. Eleven genes including CEBPD, IRF1, TLR9, SRC, and RHOA, significantly indicated in immune-related pathways, were identified to be associated with BCoV, and implicated in other coronaviruses. Of the 70 miRNAs predicted to target the identified genes, four concomitant miRNAs (bta-miR-11975, bta-miR-11976, bta-miR-22-3p, and bta-miR-2325c) were found. Examining the gene interaction network suggests IL-6, IRF1, and TP53 as key drivers. Phylogenetic analysis revealed that miR-22 was completely conserved across all 14 species it was searched against, suggesting a shared and important functional role. Functional annotation and associated pathways of target genes, such as positive regulation of cytokine production, IL-6 signaling pathway, and regulation of leukocyte differentiation, indicate the miRNAs are major participants in multiple aspects of both innate and adaptive immune response. Examination of variants evinced a potentially deleterious SNP in bta-miR-22-3p and an advantageous SNP in bta-miR-2325c. Conclusively, this study provides new insight into miRNAs regulating genes responding to BCoV infection, with bta-miR-22-3p particularly indicated as a potential drug target or diagnostic marker for bovine coronavirus.
Collapse
Affiliation(s)
| | | | - Ellis Strutton
- Department of Biology, Hamilton College, Clinton, NY, United States
| | - Kahleel Bernard
- Department of Biology, Hamilton College, Clinton, NY, United States
| | - Elaine Yip
- Department of Biology, Hamilton College, Clinton, NY, United States
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
6
|
Morenikeji OB, Strutton E, Wallace M, Bernard K, Yip E, Thomas BN. Dissecting Transcription Factor-Target Interaction in Bovine Coronavirus Infection. Microorganisms 2020; 8:E1323. [PMID: 32872640 PMCID: PMC7564962 DOI: 10.3390/microorganisms8091323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are RNA viruses that cause significant disease within many species, including cattle. Bovine coronavirus (BCoV) infects cattle and wild ruminants, both as a respiratory and enteric pathogen, and possesses a significant economic threat to the cattle industry. Transcription factors are proteins that activate or inhibit transcription through DNA binding and have become new targets for disease therapies. This study utilized in silico tools to identify potential transcription factors that can serve as biomarkers for regulation of BCoV pathogenesis in cattle, both for testing and treatment. A total of 11 genes were identified as significantly expressed during BCoV infection through literature searches and functional analyses. Eleven transcription factors were predicted to target those genes (AREB6, YY1, LMO2, C-Rel, NKX2-5, E47, RORAlpha1, HLF, E4BP4, ARNT, CREB). Function, network, and phylogenetic analyses established the significance of many transcription factors within the immune response. This study establishes new information on the transcription factors and genes related to host-pathogen interactome in BCoV infection, particularly transcription factors YY1, AREB6, LMO2, and NKX2, which appear to have strong potential as diagnostic markers, and YY1 as a potential target for drug therapies.
Collapse
Affiliation(s)
- Olanrewaju B. Morenikeji
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (O.B.M.); (E.S.); (M.W.); (K.B.); (E.Y.)
| | - Ellis Strutton
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (O.B.M.); (E.S.); (M.W.); (K.B.); (E.Y.)
| | - Madeleine Wallace
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (O.B.M.); (E.S.); (M.W.); (K.B.); (E.Y.)
| | - Kahleel Bernard
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (O.B.M.); (E.S.); (M.W.); (K.B.); (E.Y.)
| | - Elaine Yip
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (O.B.M.); (E.S.); (M.W.); (K.B.); (E.Y.)
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|
7
|
SNP Diversity in CD14 Gene Promoter Suggests Adaptation Footprints in Trypanosome Tolerant N'Dama ( Bos taurus) but not in Susceptible White Fulani ( Bos indicus) Cattle. Genes (Basel) 2020; 11:genes11010112. [PMID: 31963925 PMCID: PMC7017169 DOI: 10.3390/genes11010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune response to infections has been shown to be mediated by genetic diversity in pattern recognition receptors, leading to disease tolerance or susceptibility. We elucidated naturally occurring variations within the bovine CD14 gene promoter in trypanosome-tolerant (N'Dama) and susceptible (White Fulani) cattle, with genomic and computational approaches. Blood samples were collected from White Fulani and N'Dama cattle, genomic DNA extracted and the entire promoter region of the CD14 gene amplified by PCR. We sequenced this region and performed in silico computation to identify SNP variants, transcription factor binding sites, as well as micro RNAs in the region. CD14 promoter sequences were compared with the reference bovine genome from the Ensembl database to identify various SNPs. Furthermore, we validated three selected N'Dama specific SNPs using custom Taqman SNP genotyping assay for genetic diversity. In all, we identified a total of 54 and 41 SNPs at the CD14 promoter for N'Dama and White Fulani respectively, including 13 unique SNPs present in N'Dama only. The significantly higher SNP density at the CD14 gene promoter region in N'Dama may be responsible for disease tolerance, possibly an evolutionary adaptation. Our genotype analysis of the three loci selected for validation show that mutant alleles (A/A, C/C, and A/A) were adaptation profiles within disease tolerant N'Dama. A similar observation was made for our haplotype analysis revealing that haplotypes H1 (ACA) and H2 (ACG) were significant combinations within the population. The SNP effect prediction revealed 101 and 89 new transcription factor binding sites in N'Dama and White Fulani, respectively. We conclude that disease tolerant N'Dama possessing higher SNP density at the CD14 gene promoter and the preponderance of mutant alleles potentially confirms the significance of this promoter in immune response, which is lacking in susceptible White Fulani. We, therefore, recommend further in vitro and in vivo study of this observation in infected animals, as the next step for understanding genetic diversity relating to varying disease phenotypes in both breeds.
Collapse
|