1
|
Hariri Akbari F, Song Z, Turk M, Gunde-Cimerman N, Gostinčar C. Experimental evolution of extremotolerant and extremophilic fungi under osmotic stress. IUBMB Life 2024; 76:617-631. [PMID: 38647201 DOI: 10.1002/iub.2825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Experimental evolution was carried out to investigate the adaptive responses of extremotolerant fungi to a stressful environment. For 12 cultivation cycles, the halotolerant black yeasts Aureobasidium pullulans and Aureobasidium subglaciale were grown at high NaCl or glycerol concentrations, and the halophilic basidiomycete Wallemia ichthyophaga was grown close to its lower NaCl growth limit. All evolved Aureobasidium spp. accelerated their growth at low water activity. Whole genomes of the evolved strains were sequenced. No aneuploidies were detected in any of the genomes, contrary to previous studies on experimental evolution at high salinity with other species. However, several hundred single-nucleotide polymorphisms were identified compared with the genomes of the progenitor strains. Two functional groups of genes were overrepresented among the genes presumably affected by single-nucleotide polymorphisms: voltage-gated potassium channels in A. pullulans at high NaCl concentration, and hydrophobins in W. ichthyophaga at low NaCl concentration. Both groups of genes were previously associated with adaptation to high salinity. Finally, most evolved Aureobasidium spp. strains were found to have increased intracellular and decreased extracellular glycerol concentrations at high salinity, suggesting that the strains have optimised their management of glycerol, their most important compatible solute. Experimental evolution therefore not only confirmed the role of potassium transport, glycerol management, and cell wall in survival at low water activity, but also demonstrated that fungi from extreme environments can further improve their growth rates under constant extreme conditions in a relatively short time and without large scale genomic rearrangements.
Collapse
Affiliation(s)
- Farhad Hariri Akbari
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Zewei Song
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Martina Turk
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostinčar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Abstract
Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| |
Collapse
|
3
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
4
|
Gostinčar C, Sun X, Černoša A, Fang C, Gunde-Cimerman N, Song Z. Clonality, inbreeding, and hybridization in two extremotolerant black yeasts. Gigascience 2022; 11:giac095. [PMID: 36200832 PMCID: PMC9535773 DOI: 10.1093/gigascience/giac095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The great diversity of lifestyles and survival strategies observed in fungi is reflected in the many ways in which they reproduce and recombine. Although a complete absence of recombination is rare, it has been reported for some species, among them 2 extremotolerant black yeasts from Dothideomycetes: Hortaea werneckii and Aureobasidium melanogenum. Therefore, the presence of diploid strains in these species cannot be explained as the product of conventional sexual reproduction. RESULTS Genome sequencing revealed that the ratio of diploid to haploid strains in both H. werneckii and A. melanogenum is about 2:1. Linkage disequilibrium between pairs of polymorphic loci and a high degree of concordance between the phylogenies of different genomic regions confirmed that both species are clonal. Heterozygosity of diploid strains is high, with several hybridizing genome pairs reaching the intergenomic distances typically seen between different fungal species. The origin of diploid strains collected worldwide can be traced to a handful of hybridization events that produced diploids, which were stable over long periods of time and distributed over large geographic areas. CONCLUSIONS Our results, based on the genomes of over 100 strains of 2 black yeasts, show that although they are clonal, they occasionally form stable and highly heterozygous diploid intraspecific hybrids. The mechanism of these apparently rare hybridization events, which are not followed by meiosis or haploidization, remains unknown. Both extremotolerant yeasts, H. werneckii and even more so A. melanogenum, a close relative of the intensely recombining and biotechnologically relevant Aureobasidium pullulans, provide an attractive model for studying the role of clonality and ploidy in extremotolerant fungi.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Xiaohuan Sun
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Anja Černoša
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Chao Fang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zewei Song
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| |
Collapse
|
5
|
Palumbo RJ, McKean N, Leatherman E, Namitz KEW, Connell L, Wolfe A, Moody K, Gostinčar C, Gunde-Cimerman N, Bah A, Hanes SD. Coevolution of the Ess1-CTD axis in polar fungi suggests a role for phase separation in cold tolerance. SCIENCE ADVANCES 2022; 8:eabq3235. [PMID: 36070379 PMCID: PMC9451162 DOI: 10.1126/sciadv.abq3235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 06/14/2023]
Abstract
Most of the world's biodiversity lives in cold (-2° to 4°C) and hypersaline environments. To understand how cells adapt to such conditions, we isolated two key components of the transcription machinery from fungal species that live in extreme polar environments: the Ess1 prolyl isomerase and its target, the carboxy-terminal domain (CTD) of RNA polymerase II. Polar Ess1 enzymes are conserved and functional in the model yeast, Saccharomyces cerevisiae. By contrast, polar CTDs diverge from the consensus (YSPTSPS)26 and are not fully functional in S. cerevisiae. These CTDs retain the critical Ess1 Ser-Pro target motifs, but substitutions at Y1, T4, and S7 profoundly affected their ability to undergo phase separation in vitro and localize in vivo. We propose that environmentally tuned phase separation by the CTD and other intrinsically disordered regions plays an adaptive role in cold tolerance by concentrating enzymes and substrates to overcome energetic barriers to metabolic activity.
Collapse
Affiliation(s)
- Ryan J. Palumbo
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Nathan McKean
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Erinn Leatherman
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Kevin E. W. Namitz
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Laurie Connell
- School of Marine Sciences and Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Aaron Wolfe
- Ichor Life Sciences Inc., 2651 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Kelsey Moody
- Ichor Life Sciences Inc., 2651 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven D. Hanes
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
Fungi are key players in extreme ecosystems. Trends Ecol Evol 2022; 37:517-528. [PMID: 35246323 DOI: 10.1016/j.tree.2022.02.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
Extreme environments on Earth are typically devoid of macro life forms and are inhabited predominantly by highly adapted and specialized microorganisms. The discovery and persistence of these extremophiles provides tools to model how life arose on Earth and inform us on the limits of life. Fungi, in particular, are among the most extreme-tolerant organisms with highly versatile lifestyles and stunning ecological and morphological plasticity. Here, we overview the most notable examples of extremophilic and stress-tolerant fungi, highlighting their key roles in the functionality and balance of extreme ecosystems. The remarkable ability of fungi to tolerate and even thrive in the most extreme environments, which preclude most organisms, have reshaped current concepts regarding the limits of life on Earth.
Collapse
|
7
|
|
8
|
Recent developments in the biology and biotechnological applications of halotolerant yeasts. World J Microbiol Biotechnol 2022; 38:27. [PMID: 34989905 DOI: 10.1007/s11274-021-03213-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Natural hypersaline environments are inhabited by an abundance of prokaryotic and eukaryotic microorganisms capable of thriving under extreme saline conditions. Yeasts represent a substantial fraction of halotolerant eukaryotic microbiomes and are frequently isolated as food contaminants and from solar salterns. During the last years, a handful of new species has been discovered in moderate saline environments, including estuarine and deep-sea waters. Although Saccharomyces cerevisiae is considered the primary osmoadaptation model system for studies of hyperosmotic stress conditions, our increasing understanding of the physiology and molecular biology of halotolerant yeasts provides new insights into their distinct metabolic traits and provides novel and innovative opportunities for genome mining of biotechnologically relevant genes. Yeast species such as Debaryomyces hansenii, Zygosaccharomyces rouxii, Hortaea werneckii and Wallemia ichthyophaga show unique properties, which make them attractive for biotechnological applications. Select halotolerant yeasts are used in food processing and contribute to aromas and taste, while certain gene clusters are used in second generation biofuel production. Finally, both pharmaceutical and chemical industries benefit from applications of halotolerant yeasts as biocatalysts. This comprehensive review summarizes the most recent findings related to the biology of industrially-important halotolerant yeasts and provides a detailed and up-to-date description of modern halotolerant yeast-based biotechnological applications.
Collapse
|